Weird Sort-and-Compress Thing

Overview

Weird Sort-and-Compress Thing

A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by some name I don't know yet). There's a lot still to improve about this algorithm, so be careful where you use it.

How it works

Here's an example for the following list:

l = [1, 2, 2, 2, 3]

The algorithm starts with counting sort, creating a dictionary with each unique number as key and the number of occurences of it in the list as the value:

d = {1: 1, 2: 3, 3: 1}

To decrease the space needed to store the numbers in memory, we'll only store the first number and then the difference between each of the next numbers and the previous one:

d2 = [(1, 1), (1, 3), (1, 1))

Now, the minimum amount of memory we need to store every key that's in d2 is 1 bit, since 1 is the maximum difference between any subsequent elements. The same applies to the values, except that to store any value here we need 2 bits of memory, since the maximum value is 3(11 in binary). So we know that we can store this list as a sequence of 3 bits elements, like this:

d2_bin = ["101", "111", 101"]

We can now return the list as a single number, along with a pair of integers containing the number of bits in each key and the number of bits in each value, allowing the value to be decompressed.

Memory efficiency

Here's a list with the sum of the number of bits of all numbers in a list with 100 elements, generated with random values in the range 0 to 50 and generated 20 times, vs. the number of bits in the resulting compressed integer(taking as a premise that all numbers in the array are all actually stored in continuous memory, including duplicates):

467 => 208
486 => 230
490 => 221
491 => 216
493 => 222
491 => 221
494 => 230
485 => 235
494 => 217
490 => 252
461 => 265
476 => 241
492 => 247
487 => 230
474 => 246
460 => 222
484 => 216
486 => 203
484 => 222
485 => 231

And 1000 numbers from 0 to 50, also 20 times:

4724 => 358
4827 => 309
4818 => 308
4801 => 309
4763 => 309
4763 => 309
4801 => 359
4757 => 359
4766 => 309
4794 => 309
4769 => 309
4789 => 359
4887 => 359
4787 => 309
4761 => 309
4749 => 309
4844 => 308
4798 => 359
4799 => 308
4763 => 359
Owner
Douglas
Douglas
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022
Simple and efficient RevNet-Library with DeepSpeed support

RevLib Simple and efficient RevNet-Library with DeepSpeed support Features Half the constant memory usage and faster than RevNet libraries Less memory

Lucas Nestler 112 Dec 05, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022