Curso práctico: NLP de cero a cien 🤗

Overview

Curso Práctico: NLP de cero a cien

Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utilizando una de las bibliotecas más populares en este campo: Hugging Face. Independientemente de tus conocimientos actuales, terminarás el curso hablando tranquilamente de Transformers, Word Embeddings, modelos secuenciales, mecanismos de atención y modelado del lenguaje.

➡️ Versión web: https://somosnlp.org/nlp-de-cero-a-cien

Calendario

El curso está dividido en 7 sesiones que se impartirán cada dos martes a las 18h CET a partir del 13 de Julio. Dependiendo de tu nivel actual puedes unirte al curso en la sesión que quieras.

  • 13 Jul: Introducción al NLP y Word Embeddings
  • 27 Jul: Modelos secuenciales (RNNs, LSTMs)
  • 10 Ag: Transformers I. Arquitectura Transformer y mecanismo de atención
  • 24 Ag: Transformers II. Aprendizaje por transferencia
  • 7 Sep: Transformers III. Generación de texto
  • 21 Sep: Transformers IV. Modelado del lenguaje
  • 5 Oct: Demos de NLP con 🤗 Spaces

Cada sesión durará 30 minutos y habrá 10 minutos extra dedicados a resolver dudas de los asistentes.

¿Te has perdido una sesión? ¡No pasa nada!

  • Subimos las grabaciones a esta playlist de YouTube.
  • En este repositorio puedes consultar todo el material del curso y recursos extra.
  • Puedes preguntar tus dudas en el canal #nlp-de-cero-a-cien de nuesta comunidad de Discord.

Formadores

Por orden alfabético:

María Grandury: María es una Ingeniera e Investigadora de Machine Learning enfocada en NLP y en la fiabilidad de la IA (i.e. XAI, ataques adversarios). Estudió el doble grado de Matemáticas y Física y actualmente trabaja en neurocat, donde desarrolla una herramienta para explicar y evaluar la estabilidad de cualquier modelo de ML. María forma parte de Women in AI & Robotics cuya misión es promover una IA inclusiva y responsable. También fundó la comunidad Somos NLP con el objetivo de acelerar el avance del NLP en español.

Manuel Romero: Manuel tiene una "mente inquieta y un alma emprendedora". Estudió ingeniería informática y cuenta con casi 10 años de experiencia como desarrollador back-end y arquitecto de software. Además, es un SCRUM Master y Product Owner certificado. Actualmente trabaja en Narrativa como Ingeniero Senior de Inteligencia Artificial especializado en NLP/NLG y es el mayor contribuidor del Model Hub de Hugging Face con más de 200 modelos.

Omar Sanseviero: Omar es un Ingeniero de Machine Learning con 7 años de experiencia en la industria de la tecnología. Actualmente trabaja en Hugging Face en el equipo de open-source democratizando el uso de Machine Learning. Previamente, Omar trabajó como Ingeniero de Software en Google en Suiza en el equipo de Assistant. Omar es un apasionado de la educación y co-fundó AI Learners, una comunidad de personas que buscan aprender y discutir temas sobre Inteligencia Artificial y sus diferentes aplicaciones.

Lewis Tunstall: Lewis es Ingeniero de Machine Learning en el equipo de open-source de Hugging Face. Tiene varios años de experiencia construyendo aplicaciones de Machine Learning para startups y empresas en los dominios de NLP, análisis de datos topológicos y series temporales. Tiene un doctorado en física teórica y ha ocupado puestos de investigación en Australia, Estados Unidos y Suiza. Su trabajo actual se centra en el desarrollo de herramientas para la comunidad de NLP y en la formación de las personas para que las utilicen de forma eficaz.

Inscripción

El curso es gratuito y via online. Al registrarte en Eventbrite recibirás un email de confirmación y otro el día de cada sesión para poder entrar en el workshop.

Organizan Somos NLP 🤗 y Spain AI

Somos NLP 🤗

Somos NLP es la red internacional de profesionales, investigadores y estudiantes acelerando el avance del NLP en español. Nació como la comunidad de hispanohablantes de la iniciativa "Languages at Hugging Face" con el objetivo de democratizar el NLP en español:

  • ¿Cómo? Creando y compartiendo recursos que posibiliten y aceleren el desarrollo del NLP en Español.
  • ¿Por qué? La investigación en NLP está centrada en el inglés y descuida las dificultades particulares del NLP en español. Creemos que un idioma tan extendido como el español debería tener una representación acorde en el ámbito del NLP y vamos a hacer esto realidad.

¡Únete a la comunidad en Discord y síguenos en YouTube, Twitter y LinkedIn!

Spain AI

Spain AI es una red nacional y asociación sin ánimo de lucro, con la finalidad de crear una comunidad colaborativa dentro del ámbito de la Inteligencia Artificial en España.

26 ciudades ya y creciendo. Únete a nosotros o crea tu propia comunidad en spain-ai.com y @Spain_AI. ¡Síguenos!

Owner
Somos NLP
Comunidad de profesionales, investigadores y estudiantes acelerando el avance del NLP en Español.
Somos NLP
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset.

TunBERT is the first release of a pre-trained BERT model for the Tunisian dialect using a Tunisian Common-Crawl-based dataset. TunBERT was applied to three NLP downstream tasks: Sentiment Analysis (S

InstaDeep Ltd 72 Dec 09, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Mycroft Core, the Mycroft Artificial Intelligence platform.

Mycroft Mycroft is a hackable open source voice assistant. Table of Contents Getting Started Running Mycroft Using Mycroft Home Device and Account Man

Mycroft 6.1k Jan 09, 2023
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

3 Aug 10, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
Asr abc - Automatic speech recognition(ASR),中文语音识别

语音识别的简单示例,主要在课堂演示使用 创建python虚拟环境 在linux 和macos 上验证通过 # 如果已经有pyhon3.6 环境,跳过该步骤,使用

LIyong.Guo 8 Nov 11, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022