Levenshtein and Hamming distance computation

Overview

distance - Utilities for comparing sequences

This package provides helpers for computing similarities between arbitrary sequences. Included metrics are Levenshtein, Hamming, Jaccard, and Sorensen distance, plus some bonuses. All distance computations are implemented in pure Python, and most of them are also implemented in C.

Installation

If you don't want or need to use the C extension, just unpack the archive and run, as root:

# python setup.py install

For the C extension to work, you need the Python source files, and a C compiler (typically Microsoft Visual C++ 2010 on Windows, and GCC on Mac and Linux). On a Debian-like system, you can get all of these with:

# apt-get install gcc pythonX.X-dev

where X.X is the number of your Python version.

Then you should type:

# python setup.py install --with-c

Note the use of the --with-c switch.

Usage

A common use case for this module is to compare single words for similarity:

>>> distance.levenshtein("lenvestein", "levenshtein")
3
>>> distance.hamming("hamming", "hamning")
1

If there is not a one-to-one mapping between sounds and glyphs in your language, or if you want to compare not glyphs, but syllables or phonems, you can pass in tuples of characters:

>>> t1 = ("de", "ci", "si", "ve")
>>> t2 = ("de", "ri", "si", "ve")
>>> distance.levenshtein(t1, t2)
1

Comparing lists of strings can also be useful for computing similarities between sentences, paragraphs, etc.:

>>> sent1 = ['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog']
>>> sent2 = ['the', 'lazy', 'fox', 'jumps', 'over', 'the', 'crazy', 'dog']
>>> distance.levenshtein(sent1, sent2)
3

Hamming and Levenshtein distance can be normalized, so that the results of several distance measures can be meaningfully compared. Two strategies are available for Levenshtein: either the length of the shortest alignment between the sequences is taken as factor, or the length of the longer one. Example uses:

>>> distance.hamming("fat", "cat", normalized=True)
0.3333333333333333
>>> distance.nlevenshtein("abc", "acd", method=1)  # shortest alignment
0.6666666666666666
>>> distance.nlevenshtein("abc", "acd", method=2)  # longest alignment
0.5

jaccard and sorensen return a normalized value per default:

>>> distance.sorensen("decide", "resize")
0.5555555555555556
>>> distance.jaccard("decide", "resize")
0.7142857142857143

As for the bonuses, there is a fast_comp function, which computes the distance between two strings up to a value of 2 included. If the distance between the strings is higher than that, -1 is returned. This function is of limited use, but on the other hand it is quite faster than levenshtein. There is also a lcsubstrings function which can be used to find the longest common substrings in two sequences.

Finally, two convenience iterators ilevenshtein and ifast_comp are provided, which are intended to be used for filtering from a long list of sequences the ones that are close to a reference one. They both return a series of tuples (distance, sequence). Example:

>>> tokens = ["fo", "bar", "foob", "foo", "fooba", "foobar"]
>>> sorted(distance.ifast_comp("foo", tokens))
[(0, 'foo'), (1, 'fo'), (1, 'foob'), (2, 'fooba')]
>>> sorted(distance.ilevenshtein("foo", tokens, max_dist=1))
[(0, 'foo'), (1, 'fo'), (1, 'foob')]

ifast_comp is particularly efficient, and can handle 1 million tokens without a problem.

For more informations, see the functions documentation (help(funcname)).

Have fun!

Changelog

20/11/13:

  • Switched back to using the to-be-deprecated Python unicode api. Good news is that this makes the C extension compatible with Python 2.7+, and that distance computations on unicode strings is now much faster.
  • Added a C version of lcsubstrings.
  • Added a new method for computing normalized Levenshtein distance.
  • Added some tests.

12/11/13: Expanded fast_comp (formerly quick_levenshtein) so that it can handle transpositions. Fixed variable interversions in (C) levenshtein which produced sometimes strange results.

10/11/13: Added quick_levenshtein and iquick_levenshtein.

05/11/13: Added Sorensen and Jaccard metrics, fixed memory issue in Levenshtein.

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 09, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Transcribing audio files using Hugging Face's implementation of Wav2Vec2 + "chain-linking" NLP tasks to combine speech-to-text with downstream tasks like translation and summarisation.

PART 2: CHAIN LINKING AUDIO-TO-TEXT NLP TASKS 2A: TRANSCRIBE-TRANSLATE-SENTIMENT-ANALYSIS In notebook3.0, I demo a simple workflow to: transcribe a lo

Chua Chin Hon 30 Jul 13, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器

ja-timex 自然言語で書かれた時間情報表現を抽出/規格化するルールベースの解析器 概要 ja-timex は、現代日本語で書かれた自然文に含まれる時間情報表現を抽出しTIMEX3と呼ばれるアノテーション仕様に変換することで、プログラムが利用できるような形に規格化するルールベースの解析器です。

Yuki Okuda 116 Nov 09, 2022