Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Overview

Semantic search through Wikipedia with the Weaviate vector search engine

Weaviate is an open source vector search engine with build-in vectorization and question answering modules. We imported the complete English language Wikipedia article dataset into a single Weaviate instance to conduct semantic search queries through the Wikipedia articles, besides this, we've made all the graph relations between the articles too. We have made the import scripts, pre-processed articles, and backup available so that you can run the complete setup yourself.

In this repository, you'll find the 3-steps needed to replicate the import, but there are also downlaods available to skip the first two steps.

If you like what you see, a on the Weaviate Github repo or joining our Slack is appreciated.

Additional links:

Frequently Asked Questions

Q A
Can I run this setup with a non-English dataset? Yes – first, you need to go through the whole process (i.e., start with Step 1). E.g., if you want French, you can download the French version of Wikipedia like this: https://dumps.wikimedia.org/frwiki/latest/frwiki-latest-pages-articles.xml.bz2 (note that en if replaced with fr). Next, you need to change the Weaviate vectorizer module to an appropriate language. You can choose an OOTB language model as outlined here or add your own model as outlined here.
Can I run this setup with all languages? Yes – you can follow two strategies. You can use a multilingual model or extend the Weaviate schema to store different languages with different classes. The latter has the upside that you can use multiple vectorizers (e.g., per language) or a more elaborate sharding strategy. But in the end, both are possible.
Can I run this with Kubernetes? Of course, you need to start from Step 2. But if you follow the Kubernetes set up in the docs you should be good :-)
Can I run this with my own data? Yes! This is just a demo dataset, you can use any data you have and like. Go to the Weaviate docs or join our Slack to get started.

Acknowledgments

Stats

description value
Articles imported 11.348.257
Paragaphs imported 27.377.159
Graph cross references 125.447.595
Wikipedia version truthy October 9th, 2021
Machine for inference 12 CPU – 100 GB RAM – 250Gb SSD – 1 x NVIDIA Tesla P4
Weaviate version v1.7.2
Dataset size 122GB

Example queries

Example semantic search queries in Weaviate's GraphQL interface

Import

There are 3-steps in the import process. You can also skip the first two and directly import the backup

Step 1: Process the Wikipedia dump

In this process, the Wikipedia dataset is processed and cleaned (the markup is removed, HTML tags are removed, etc). The output file is a JSON Lines document that will be used in the next step.

Process from the Wikimedia dump:

$ cd step-1
$ wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
$ bzip2 -d filename.bz2
$ pip3 install -r requirements.txt
$ python3 process.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u process.py &

You can also download the processed file from October 9th, 2021, and skip the above steps

$ wget https://storage.googleapis.com/semi-technologies-public-data/wikipedia-en-articles.json.gz
$ gunzip wikipedia-en-articles.json.gz

Step 2: Import the dataset and vectorized the content

Weaviate takes care of the complete import and vectorization process but you'll need some GPU and CPU muscle to achieve this. Important to bear in mind is that this is only needed on import time. If you don't want to spend the resources on doing the import, you can go to the next step in the process and download the Weaviate backup. The machine needed for inference is way cheaper.

We will be using a single Weaviate instance, but four Tesla T4 GPUs that we will stuff with 8 models each. To efficiently do this, we are going to add an NGINX load balancer between Weaviate and the vectorizers.

Weaviate Wikipedia import architecture with transformers and vectorizers

  • Every Weaviate text2vec-module will be using a multi-qa-MiniLM-L6-cos-v1 sentence transformer.
  • The volume is mounted outside the container to /var/weaviate. This allows us to use this folder as a backup that can be imported in the next step.
  • Make sure to have Docker-compose with GPU support installed.
  • The import scripts assumes that the JSON file is called wikipedia-en-articles.json.
$ cd step-2
$ docker-compose up -d
$ pip3 install -r requirements.txt
$ python3 import.py

The import takes a few hours, so probably you want to do something like:

$ nohup python3 -u import.py &

After the import is done, you can shut down the Docker containers by running docker-compose down.

You can now query the dataset!

Step 3: Load from backup

Start here if you want to work with a backup of the dataset without importing it

You can now run the dataset! We would advise running it with 1 GPU, but you can also run it on CPU only (without Q&A). The machine you need for inference is significantly smaller.

Note that Weaviate needs some time to import the backup (if you use the setup mentioned above +/- 15min). You can see the status of the backup in the docker logs of the Weaviate container.

# clone this repository
$ git clone https://github.com/semi-technologies/semantic-search-through-Wikipedia-with-Weaviate/
# go into the backup dir
$ cd step-3
# download the Weaviate backup
$ curl https://storage.googleapis.com/semi-technologies-public-data/weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz -O
# untar the backup (112G unpacked)
$ tar -xvzf weaviate-1.8.0-rc.2-backup-wikipedia-py-en-multi-qa-MiniLM-L6-cos.tar.gz
# get the unpacked directory
$ echo $(pwd)/var/weaviate
# use the above result (e.g., /home/foobar/var/weaviate)
#   update volumes in docker-compose.yml (NOT PERSISTENCE_DATA_PATH!) to the above output
#   (e.g., 
#     volumes:
#       - /home/foobar/var/weaviate:/var/lib/weaviate
#   )    
#
#   With 12 CPUs this process takes about 12 to 15 minutes to complete.
#   The Weaviate instance will be available directly, but the cache is pre-filling in this timeframe

With GPU

$ cd step-3
$ docker-compose -f docker-compose-gpu.yml up -d

Without GPU

$ cd step-3
$ docker-compose -f docker-compose-no-gpu.yml up -d

Example queries

"Where is the States General of The Netherlands located?" try it live!

##
# Using the Q&A module I
##
{
  Get {
    Paragraph(
      ask: {
        question: "Where is the States General of The Netherlands located?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

"What was the population of the Dutch city Utrecht in 2019?" try it live!

##
# Using the Q&A module II
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was the population of the Dutch city Utrecht in 2019?"
        properties: ["content"]
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
          certainty
        }
      }
      content
      title
    }
  }
}

About the concept "Italian food" try it live!

##
# Generic question about Italian food
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["Italian food"]
      }
      limit: 50
    ) {
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

"What was Michael Brecker's first saxophone?" in the Wikipedia article about "Michael Brecker" try it live!

##
# Mixing scalar queries and semantic search queries
##
{
  Get {
    Paragraph(
      ask: {
        question: "What was Michael Brecker's first saxophone?"
        properties: ["content"]
      }
      where: {
        operator: Equal
        path: ["inArticle", "Article", "title"]
        valueString: "Michael Brecker"
      }
      limit: 1
    ) {
      _additional {
        answer {
          result
        }
      }
      content
      order
      title
      inArticle {
        ... on Article {
          title
        }
      }
    }
  }
}

Get all Wikipedia graph connections for "jazz saxophone players" try it live!

##
# Mixing semantic search queries with graph connections
##
{
  Get {
    Paragraph(
      nearText: {
        concepts: ["jazz saxophone players"]
      }
      limit: 25
    ) {
      content
      order
      title
      inArticle {
        ... on Article { # <== Graph connection I
          title
          hasParagraphs { # <== Graph connection II
            ... on Paragraph {
              title
            }
          }
        }
      }
    }
  }
}
Owner
SeMI Technologies
SeMI Technologies creates database software like the Weaviate vector search engine
SeMI Technologies
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Python SDK for working with Voicegain Speech-to-Text

Voicegain Speech-to-Text Python SDK Python SDK for the Voicegain Speech-to-Text API. This API allows for large vocabulary speech-to-text transcription

Voicegain 3 Dec 14, 2022
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You can find two approaches for achieving this in this repo.

multitask-learning-transformers A simple recipe for training and inferencing Transformer architecture for Multi-Task Learning on custom datasets. You

Shahrukh Khan 48 Jan 02, 2023
Chinese Pre-Trained Language Models (CPM-LM) Version-I

CPM-Generate 为了促进中文自然语言处理研究的发展,本项目提供了 CPM-LM (2.6B) 模型的文本生成代码,可用于文本生成的本地测试,并以此为基础进一步研究零次学习/少次学习等场景。[项目首页] [模型下载] [技术报告] 若您想使用CPM-1进行推理,我们建议使用高效推理工具BMI

Tsinghua AI 1.4k Jan 03, 2023
Princeton NLP's pre-training library based on fairseq with DeepSpeed kernel integration 🚃

This repository provides a library for efficient training of masked language models (MLM), built with fairseq. We fork fairseq to give researchers mor

Princeton Natural Language Processing 92 Dec 27, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning English | 中文 ❗ Now we provide inferencing code and pre-training models

164 Jan 02, 2023
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022