Integrated physics-based and ligand-based modeling.

Related tags

Deep Learningcombind
Overview

ComBind

ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction.

Given the chemical structures of several ligands that can bind a given target protein, ComBind solves for a set of poses, one per ligand, that are both highly scored by physics-based docking and display similar interactions with the target protein. ComBind quantifies this vague notion of "similar" by considering a diverse training set of protein complexes and computing the overlap between protein–ligand interactions formed by distinct ligands when they are in their correct poses, as compared to when they are in randomly selected poses. To predict binding affinities, poses are predicted for the known binders using ComBind, and then the candidate molecule is scored according to the ComBind score w.r.t the selected poses.

Predicting poses for known binders

First, see instructuctions for software installation at the bottom of this page.

Running ComBind can be broken into several components: data curation, data preparation (including docking), featurization of docked poses, and the ComBind scoring itself.

Note that if you already have docked poses for your molecules of interest, you can proceed to the featurization step. If you are knowledgable about your target protein, you may well be able to get better docking results by manually preparing the data than would be obtained using the automated procedure implemented here.

Curation of raw data

To produce poses for a particular protein, you'll need to provide a 3D structure of the target protein and chemical structures of ligands to dock.

These raw inputs need to be properly stored so that the rest of the pipeline can recognize them.

The structure(s) should be stored in a directory structures/raw. Each structure should be split into two files NAME_prot.mae and NAME_lig.mae containing only the protein and only the ligand, respectively.

If you'd prefer to prepare your structures yourself, save your prepared files to structures/proteins and structures/ligands. Moreover, you could even just begin with a Glide docking grid which you prepared yourself by placing it in docking/grids.

Ligands should be specified in a csv file with a header line containing at least the entries "ID" and "SMILES", specifying the ligand name and the ligand chemical structure.

Data preparation and docking

Use the following command, to prepare the structural data using Schrodinger's prepwizard, align the structures to each other, and produce a docking grid.

combind structprep

In parallel, you can prepare the ligand data using the following command. By default, the ligands will be written to seperate files (one ligand per file). You can specify the --multiplex flag to write all of the ligands to the same file.

combind ligprep ligands.csv

Once the docking grid and ligand data have been prepared, you can run the docking. The arguments to the dock command are a list of ligand files to be docked. By default, the docking grid is the alphabetically first grid present in structures/grids; use the --grid option to specify a different grid.

combind dock ligands/*/*.maegz

Featurization

Note that this is the

combind featurize features docking/*/*_pv.maegz

Pose prediction with ComBind

combind pose-prediction features poses.csv

ComBind virtual screening

To run ComBindVS, first use ComBind to

Installation

Start by cloning this git repository (likely into your home directory).

ComBind requires access to Glide along with several other Schrodinger tools and the Schrodinger Python API.

The Schrodinger suite of tools can be accessed on Sherlock by running ml chemistry schrodinger. This will add many of the Schrodinger tools to your path and sets the SCHRODINGER environmental variable. (Some tools are not added to your path and you'll need to write out $SCHRODINGER/tool.) After running this you should be able to run Glide by typing glide in the command line.

You can only access the Schrodinger Python API using their interpretter. Creating a virtual environment that makes their interpretter the default python interpretter is the simplest way to do this. To create the environment and upgrade the relevant packages run the following:

cd
$SCHRODINGER/run schrodinger_virtualenv.py schrodinger.ve
source schrodinger.ve/bin/activate
pip install --upgrade numpy sklearn scipy pandas

cd combind
ln -s  ~/schrodinger.ve/bin/activate schrodinger_activate

This last line is just there to provide a standardized way to access the activation script.

Run source schrodinger_activate to activate the environment in the future, you'll need to do this everytime before running ComBind. This is included in the setup_sherlock script; you can source the script by running source setup_sherlock.

Owner
Dror Lab
Ron Dror's computational biology laboratory at Stanford University
Dror Lab
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Doosan robotic arm, simulation, control, visualization in Gazebo and ROS2 for Reinforcement Learning.

Robotic Arm Simulation in ROS2 and Gazebo General Overview This repository includes: First, how to simulate a 6DoF Robotic Arm from scratch using GAZE

David Valencia 12 Jan 02, 2023
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022