Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

Related tags

Deep LearningAPR
Overview

APR

The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

Environment setup

To reproduce the results in the paper, we rely on two open-source IR toolkits: Pyserini and tevatron.

We cloned, merged, and modified the two toolkits in this repo and will use them to train and inference the PRF models. We refer to the original github repos to setup the environment:

Install Pyserini: https://github.com/castorini/pyserini/blob/master/docs/installation.md.

Install tevatron: https://github.com/texttron/tevatron#installation.

You also need MS MARCO passage ranking dataset, including the collection and queries. We refer to the official github repo for downloading the data.

To reproduce ANCE-PRF inference results with the original model checkpoint

The code, dataset, and model for reproducing the ANCE-PRF results presented in the original paper:

HongChien Yu, Chenyan Xiong, Jamie Callan. Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback

have been merged into Pyserini source. Simply just need to follow this instruction, which includes the instructions of downloading the dataset, model checkpoint (provided by the original authors), dense index, and PRF inference.

To train dense retriever PRF models

We use tevatron to train the dense retriever PRF query encodes that we investigated in the paper.

First, you need to have train queries run files to build hard negative training set for each DR.

You can use Pyserini to generate run files for ANCE, TCT-ColBERTv2 and DistilBERT KD TASB by changing the query set flag --topics to queries.train.tsv.

Once you have the run file, cd to /tevatron and run:

python make_train_from_ranking.py \
	--ranking_file /path/to/train/run \
	--model_type (ANCE or TCT or DistilBERT) \
	--output /path/to/save/hard/negative

Apart from the hard negative training set, you also need the original DR query encoder model checkpoints to initial the model weights. You can download them from Huggingface modelhub: ance, tct_colbert-v2-hnp-msmarco, distilbert-dot-tas_b-b256-msmarco. Please use the same name as the link in Huggingface modelhub for each of the folders that contain the model.

After you generated the hard negative training set and downloaded all the models, you can kick off the training for DR-PRF query encoders by:

python -m torch.distributed.launch \
    --nproc_per_node=2 \
    -m tevatron.driver.train \
    --output_dir /path/to/save/mdoel/checkpoints \
    --model_name_or_path /path/to/model/folder \
    --do_train \
    --save_steps 5000 \
    --train_dir /path/to/hard/negative \
    --fp16 \
    --per_device_train_batch_size 32 \
    --learning_rate 1e-6 \
    --num_train_epochs 10 \
    --train_n_passages 21 \
    --q_max_len 512 \
    --dataloader_num_workers 10 \
    --warmup_steps 5000 \
    --add_pooler

To inference dense retriever PRF models

Install Pyserini by following the instructions within pyserini/README.md

Then run:

python -m pyserini.dsearch --topics /path/to/query/tsv/file \
    --index /path/to/index \
    --encoder /path/to/encoder \ # This encoder is for first round retrieval
    --batch-size 64 \
    --output /path/to/output/run/file \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder /path/to/encoder \ # This encoder is for PRF query generation
    --prf-depth 3

An example would be:

python -m pyserini.dsearch --topics ./data/msmarco-test2020-queries.tsv \
    --index ./dindex-msmarco-passage-tct_colbert-v2-hnp-bf \
    --encoder ./tct_colbert_v2_hnp \
    --batch-size 64 \
    --output ./runs/tctv2-prf3.res \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder ./tct-colbert-v2-prf3/checkpoint-10000 \
    --prf-depth 3

Or one can use pre-built index and models available in Pyserini:

python -m pyserini.dsearch --topics dl19-passage \
    --index msmarco-passage-tct_colbert-v2-hnp-bf \
    --encoder castorini/tct_colbert-v2-hnp-msmarco \
    --batch-size 64 \
    --output ./runs/tctv2-prf3.res \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder ./tct-colbert-v2-prf3/checkpoint-10000 \
    --prf-depth 3

The PRF depth --prf-depth 3 depends on the PRF encoder trained, if trained with PRF 3, here only can use PRF 3.

Where --topics can be: TREC DL 2019 Passage: dl19-passage TREC DL 2020 Passage: dl20 MS MARCO Passage V1: msmarco-passage-dev-subset

--encoder can be: ANCE: castorini/ance-msmarco-passage TCT-ColBERT V2 HN+: castorini/tct_colbert-v2-hnp-msmarco DistilBERT Balanced: sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco

--index can be: ANCE index with MS MARCO V1 passage collection: msmarco-passage-ance-bf TCT-ColBERT V2 HN+ index with MS MARCO V1 passage collection: msmarco-passage-tct_colbert-v2-hnp-bf DistillBERT Balanced index with MS MARCO V1 passage collection: msmarco-passage-distilbert-dot-tas_b-b256-bf

To evaluate the run:

TREC DL 2019

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 -m recall.1000 -l 2 dl19-passage ./runs/tctv2-prf3.res

TREC DL 2020

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 -m recall.1000 -l 2 dl20-passage ./runs/tctv2-prf3.res

MS MARCO Passage Ranking V1

python -m pyserini.eval.msmarco_passage_eval msmarco-passage-dev-subset ./runs/tctv2-prf3.res
Owner
ielab
The Information Engineering Lab
ielab
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022