Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

Related tags

Deep LearningAPR
Overview

APR

The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

Environment setup

To reproduce the results in the paper, we rely on two open-source IR toolkits: Pyserini and tevatron.

We cloned, merged, and modified the two toolkits in this repo and will use them to train and inference the PRF models. We refer to the original github repos to setup the environment:

Install Pyserini: https://github.com/castorini/pyserini/blob/master/docs/installation.md.

Install tevatron: https://github.com/texttron/tevatron#installation.

You also need MS MARCO passage ranking dataset, including the collection and queries. We refer to the official github repo for downloading the data.

To reproduce ANCE-PRF inference results with the original model checkpoint

The code, dataset, and model for reproducing the ANCE-PRF results presented in the original paper:

HongChien Yu, Chenyan Xiong, Jamie Callan. Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback

have been merged into Pyserini source. Simply just need to follow this instruction, which includes the instructions of downloading the dataset, model checkpoint (provided by the original authors), dense index, and PRF inference.

To train dense retriever PRF models

We use tevatron to train the dense retriever PRF query encodes that we investigated in the paper.

First, you need to have train queries run files to build hard negative training set for each DR.

You can use Pyserini to generate run files for ANCE, TCT-ColBERTv2 and DistilBERT KD TASB by changing the query set flag --topics to queries.train.tsv.

Once you have the run file, cd to /tevatron and run:

python make_train_from_ranking.py \
	--ranking_file /path/to/train/run \
	--model_type (ANCE or TCT or DistilBERT) \
	--output /path/to/save/hard/negative

Apart from the hard negative training set, you also need the original DR query encoder model checkpoints to initial the model weights. You can download them from Huggingface modelhub: ance, tct_colbert-v2-hnp-msmarco, distilbert-dot-tas_b-b256-msmarco. Please use the same name as the link in Huggingface modelhub for each of the folders that contain the model.

After you generated the hard negative training set and downloaded all the models, you can kick off the training for DR-PRF query encoders by:

python -m torch.distributed.launch \
    --nproc_per_node=2 \
    -m tevatron.driver.train \
    --output_dir /path/to/save/mdoel/checkpoints \
    --model_name_or_path /path/to/model/folder \
    --do_train \
    --save_steps 5000 \
    --train_dir /path/to/hard/negative \
    --fp16 \
    --per_device_train_batch_size 32 \
    --learning_rate 1e-6 \
    --num_train_epochs 10 \
    --train_n_passages 21 \
    --q_max_len 512 \
    --dataloader_num_workers 10 \
    --warmup_steps 5000 \
    --add_pooler

To inference dense retriever PRF models

Install Pyserini by following the instructions within pyserini/README.md

Then run:

python -m pyserini.dsearch --topics /path/to/query/tsv/file \
    --index /path/to/index \
    --encoder /path/to/encoder \ # This encoder is for first round retrieval
    --batch-size 64 \
    --output /path/to/output/run/file \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder /path/to/encoder \ # This encoder is for PRF query generation
    --prf-depth 3

An example would be:

python -m pyserini.dsearch --topics ./data/msmarco-test2020-queries.tsv \
    --index ./dindex-msmarco-passage-tct_colbert-v2-hnp-bf \
    --encoder ./tct_colbert_v2_hnp \
    --batch-size 64 \
    --output ./runs/tctv2-prf3.res \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder ./tct-colbert-v2-prf3/checkpoint-10000 \
    --prf-depth 3

Or one can use pre-built index and models available in Pyserini:

python -m pyserini.dsearch --topics dl19-passage \
    --index msmarco-passage-tct_colbert-v2-hnp-bf \
    --encoder castorini/tct_colbert-v2-hnp-msmarco \
    --batch-size 64 \
    --output ./runs/tctv2-prf3.res \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder ./tct-colbert-v2-prf3/checkpoint-10000 \
    --prf-depth 3

The PRF depth --prf-depth 3 depends on the PRF encoder trained, if trained with PRF 3, here only can use PRF 3.

Where --topics can be: TREC DL 2019 Passage: dl19-passage TREC DL 2020 Passage: dl20 MS MARCO Passage V1: msmarco-passage-dev-subset

--encoder can be: ANCE: castorini/ance-msmarco-passage TCT-ColBERT V2 HN+: castorini/tct_colbert-v2-hnp-msmarco DistilBERT Balanced: sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco

--index can be: ANCE index with MS MARCO V1 passage collection: msmarco-passage-ance-bf TCT-ColBERT V2 HN+ index with MS MARCO V1 passage collection: msmarco-passage-tct_colbert-v2-hnp-bf DistillBERT Balanced index with MS MARCO V1 passage collection: msmarco-passage-distilbert-dot-tas_b-b256-bf

To evaluate the run:

TREC DL 2019

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 -m recall.1000 -l 2 dl19-passage ./runs/tctv2-prf3.res

TREC DL 2020

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 -m recall.1000 -l 2 dl20-passage ./runs/tctv2-prf3.res

MS MARCO Passage Ranking V1

python -m pyserini.eval.msmarco_passage_eval msmarco-passage-dev-subset ./runs/tctv2-prf3.res
Owner
ielab
The Information Engineering Lab
ielab
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023