Predictive Modeling & Analytics on Home Equity Line of Credit

Overview

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python)

HMEQ Data Set

In this assignment we will use Python to examine a data set containing Home Equity Loans. The data set contains two target variables. The first target, TARGET_BAD_FLAG indicates whether or not the loan defaulted. If the value is set to 1, then the loan went bad and the bank lost money. If the value is set to 0, the loan was repaid.

The second target, TARGET_LOSS_AMT, indicates the amount of money that was lost for loans that went bad. The remaining variables contain information about the customer at the time that the loan was issued.

This is the data that we will use throughout this class in order to develop predictive models that will be used to determine the level of risk for each loan.

As with all real world data, this data is far from perfect.

It contains both numerical and categorical variables. It contains missing data. It contains outliers.

Table of Contents

  • Data Preparation
  • Tree Based Models
  • Regression Based Models
  • Neural Network

Building Machine Learning Models

Developed different predictive models to determine the level risk of each loan based on whether or not loans defaulted, and loss amount on bad loans. Evaluated each model with ROC curve and RMSE accuracy metrics.

Data Preparation

  • Download the HMEQ Data set
  • Read the data into Python
  • Explore both the input and target variables using statistical techniques.
  • Explore both the input and target variables using graphs and other visualization.
  • Look for relationships between the input variables and the targets.
  • Fix (impute) all missing data.
  • Note: For numerical data, create a flag variable to indicate if the value was missing
  • Convert all categorical variables numeric variables

Tree Based Models

We will continue to use Python to develop predictive models. In this assignment, we will use three different tree based techniques to analyze the data: DECISION TREES, RANDOM FORESTS, and GRADIENT BOOSTING. The deliverables for each technique are given below.

Create a Training and Test Data Set:

Decision Trees:

  • Develop a decision tree to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
  • Display the Decision Tree using a Graphviz program
  • List the variables included in the decision tree that predict loan default.
  • Develop a decision tree to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • Display the Decision Tree using a Graphviz program
  • List the variables included in the decision tree that predict loss amount.

Random Forests:

  • Develop a Random Forest to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
  • List the variables included in the Random Forest that predict loan default.
  • Develop a Random Forest to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • List the variables included in the Random Forest that predict loss amount.

Gradient Boosting:

  • Develop a Gradient Boosting model to predict the probability of default
  • Calculate the accuracy of the model on both the training and test data set
  • Create a graph that shows the ROC curves for both the training and test data set. Clearly - label each curve and display the Area Under the ROC curve.
  • List the variables included in the Gradient Boosting that predict loan default.
  • Develop a Gradient Boosting to predict the loss amount assuming that the loan defaults
  • Calculate the RMSE for both the training data set and the test data set
  • List the variables included in the Gradient Boosting that predict loss amount.

ROC Curves:

  • Generate a ROC curve for the Decision Tree, Random Forest, and Gradient Boosting models using the Test Data Set
  • Use different colors for each curve and clearly label them
  • Include the Area under the ROC Curve (AUC) on the graph.

Regression Based Models

we will continue to use Python to develop predictive models. In this assignment, we will use two different types of regression: Linear and Logistic. We will use Logistic regression to determine the probability of a crash. Linear regression will be used to calculate the damages assuming that a crash occurs

Create a Training and Test Data Set:

Logistic Regression

  • Develop a logistic regression model to determine the probability of a loan default. Use all of the variables.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a DECISION TREE.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a RANDOM FOREST.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by a GRADIENT BOOSTING model.
  • Develop a logistic regression model to determine the probability of a loan default. Use the variables that were selected by STEPWISE SELECTION.
  • For each of the models
    • Calculate the accuracy of the model on both the training and test data set
    • Create a graph that shows the ROC curves for both the training and test data set. Clearly label each curve and display the Area Under the ROC curve.
    • Display a ROC curve for the test data with all your models on the same graph (tree based and regression). Discuss which one is the most accurate. Which one would you recommend using?
    • For one of the Regression Models, print the coefficients. Do the variables make sense? If not, what would you recommend?

Linear Regression:

  • Develop a linear regression model to determine the expected loss if the loan defaults. Use all of the variables.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a DECISION TREE.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a RANDOM FOREST.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by a GRADIENT BOOSTING model.
  • Develop a linear regression model to determine the expected loss if the loan defaults. Use the variables that were selected by STEPWISE SELECTION.
  • For each of the models
    • Calculate the RMSE for both the training data set and the test data set
    • List the RMSE for the test data set for all of the models created (tree based and regression). Discuss which one is the most accurate. Which one would you recommend using?
    • For one of the Regression Models, print the coefficients. Do the variables make sense? If not, what would you recommend?

Neural Networks

we will continue to use Python to develop predictive models. In this assignment, we will use two different types of regression: Linear and Logistic. We will use Logistic regression to determine the probability of a crash. Linear regression will be used to calculate the damages assuming that a crash occurs.

Create a Training and Test Data Set:

Tensor Flow Model To Predict Loan Defaults:

  • Develop a model using Tensor Flow that will predict Loan Default.

    • For your model, do the following:
    • Try at least three different Activation Functions
    • Try one and two hidden layers
    • Try using a Dropout Layer
  • Explore using a variable selection technique

  • For each of the models

    • Calculate the accuracy of the model on both the training and test data set
    • Create a graph that shows the ROC curves for both the training and test data set.
    • Clearly label each curve and display the Area Under the ROC curve.
    • Display a ROC curve for the test data with all your models on the same graph (tree based, regression, and TF). Discuss which one is the most accurate. Which one would you recommend using?

Tensor Flow Model to Predict Loss Given Default:

  • Develop a model using Tensor Flow that will predict Loan Default.
  • For your model, do the following:
    • Try at least three different Activation Functions
    • Try one and two hidden layers
    • Try using a Dropout Layer
  • Explore using a variable selection technique
  • For each of the models
    • Calculate the RMSE for both the training data set and the test data set
    • List the RMSE for the test data set for all of the models created (tree based, regression, and TF). Discuss which one is the most accurate. Which one would you recommend using?

Data Dictionary

VARIABLE DEFINITION ROLE TYPE CONVENTIONAL WISDOM
TARGET_BAD_FLAG BAD=1 (Loan was defaulted) TARGET BINARY HMEQ = Home Equity Line of Credit Loan. BINARY TARGET
TARGET_LOSS_AMT If loan was Bad, this was the amount not repaid. TARGET NUMBER HMEQ = Home Equity Line of Credit Loan. NUMERICAL TARGET
LOAN HMEQ Credit Line INPUT NUMBER The bigger the loan, the more risky the person
MORTDUE Current Outstanding Mortgage Balance INPUT NUMBER If you owe a lot of money on your current mortgage versus the value of your house, you are more risky.
VALUE Value of your house INPUT NUMBER If you owe a lot of money on your current mortgage versus the value of your house, you are more risky.
REASON Why do you want a loan? INPUT CATEGORY If you are consolidating debt, that might mean you are having financial trouble.
JOB What do you do for a living? INPUT CATEGORY Some jobs are unstable (and therefore are more risky)
YOJ Years on Job INPUT NUMBER If you habe been at your job for a while, you are less likely to lose that job. That makes you less risky.
DEROG Derogatory Marks on Credit Record. These are very bad things that stay on your credit report for 7 years. These include bankruptcies or leins placed on your property. INPUT NUMBER Lots of Derogatories mean that something really bad happened to you (such as a bankruptcy) in your past. This makes you more risky.
DELINQ Delinquencies on your current credit report. This refers to the number of times you were overdue when paying bills in the last three years. INPUT NUMBER When you have a lot of delinquencies, you might be more likely to default on a loan.
CLAGE Credit Line Age (in months) is how long you have had credit. Are you a new high school student with a new credit card or have you had credit cards for many years? INPUT NUMBER If you have had credit for a long time, you are considered less risky than a new high school student.
NINQ Number of inquiries. This is the number of times within the last 3 years that you went out looking for credit (such as opening a credit card at a store) INPUT NUMBER Conventional wisdom in that if you are looking for more credit, you might be in financial trouble. Thus you are risky.
CLNO Number of credit lines you have (credit cards, loans, etc.). INPUT NUMBER This is a double edged swoard. Peole who have a lot of credit lines tend to be safe. The reason is that if OTHER PEOPLE think you are trustworthy enough for a credit card, then maybe you are. However, if you have too many credit lines, you might be risky because you have the potential to run up a lot of debt.
DEBTINC Debt to Income Ratio. Take the money you spend every month and divide it by the amount of money you earn every month. INPUT NUMBER If your debt to income ratio is high then you are risky because you might not be able to pay your bills.
Owner
Dhaval Patel
Dhaval Patel
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
This module is used to create Convolutional AutoEncoders for Variational Data Assimilation

VarDACAE This module is used to create Convolutional AutoEncoders for Variational Data Assimilation. A user can define, create and train an AE for Dat

Julian Mack 23 Dec 16, 2022
Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment

Data Scientist in Simple Stock Analysis of PT Bukalapak.com Tbk for Long Term Investment Brief explanation of PT Bukalapak.com Tbk Bukalapak was found

Najibulloh Asror 2 Feb 10, 2022
In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift.

ETL Pipeline for AWS Project Description In this project, ETL pipeline is build on data warehouse hosted on AWS Redshift. The data is loaded from S3 t

Mobeen Ahmed 1 Nov 01, 2021
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
COVID-19 deaths statistics around the world

COVID-19-Deaths-Dataset COVID-19 deaths statistics around the world This is a daily updated dataset of COVID-19 deaths around the world. The dataset c

Nisa Efendioğlu 4 Jul 10, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
Churn prediction with PySpark

It is expected to develop a machine learning model that can predict customers who will leave the company.

3 Aug 13, 2021
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022