Seaborn is one of the go-to tools for statistical data visualization in python. It has been actively developed since 2012 and in July 2018, the author released version 0.9. This version of Seaborn has several new plotting features, API changes and documentation updates which combine to enhance an already great library. This article will walk through a few of the highlights and show how to use the new scatter and line plot functions for quickly creating very useful visualizations of data.

Overview

Last Commit Created Last Commit Stars Badge Forks Badge Size Pull Requests Badge Issues Badge Language MIT License

binder colab

12_Python_Seaborn_Module

Introduction 👋

From the website, “Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informational statistical graphs.”

Seaborn excels at doing Exploratory Data Analysis (EDA) which is an important early step in any data analysis project. Seaborn uses a “dataset-oriented” API that offers a consistent way to create multiple visualizations that show the relationships between many variables. In practice, Seaborn works best when using Pandas dataframes and when the data is in tidy format.

What’s New?

In my opinion the most interesting new plot is the relationship plot or relplot() function which allows you to plot with the new scatterplot() and lineplot() on data-aware grids. Prior to this release, scatter plots were shoe-horned into seaborn by using the base matplotlib function plt.scatter and were not particularly powerful. The lineplot() is replacing the tsplot() function which was not as useful as it could be. These two changes open up a lot of new possibilities for the types of EDA that are very common in Data Science/Analysis projects.

The other useful update is a brand new introduction document which very clearly lays out what Seaborn is and how to use it. In the past, one of the biggest challenges with Seaborn was figuring out how to have the “Seaborn mindset.” This introduction goes a long way towards smoothing the transition.


Table of contents 📋

No. Name
01 Seaborn_Loading_Dataset
02 Seaborn_Controlling_Aesthetics
03 Seaborn_Matplotlib_vs_Seaborn
04 Seaborn_Color_Palettes
05 Seaborn_LM Plot_&_Reg_Plot
06 Seaborn_Scatter_Plot_&_Joint_Plot
07 Seaborn_Additional_Regression_Plots
08 Seaborn_Categorical_Data_Plot
09 Seaborn_Dist_Plot
10 Seaborn_Strip_Plot
11 Seaborn_Box_Plot
12 Seaborn_Violin_Plot
13 Seaborn_Bar_Plot_and_Count_Plot
14 Seaborn_TimeSeries_and_LetterValue_Plot
15 Seaborn_Factor_Plot
16 Seaborn_PairGrid_Plot
17 Seaborn_FacetGrid_Plot
18 Seaborn_Heat_Map
19 Seaborn_Cluster_Map
datasets
11 Python Seaborn Statistical Data Visualization.pdf

These are online read-only versions. However you can Run ▶ all the codes online by clicking here ➞ binder


Install Seaborn Module:

Open your Anaconda Prompt propmt and type and run the following command (individually):

  •   pip install seaborn  
    

Once Installed now we can import it inside our python code.


Frequently asked questions

How can I thank you for writing and sharing this tutorial? 🌷

You can Star Badge and Fork Badge Starring and Forking is free for you, but it tells me and other people that it was helpful and you like this tutorial.

Go here if you aren't here already and click ➞ ✰ Star and ⵖ Fork button in the top right corner. You will be asked to create a GitHub account if you don't already have one.


How can I read this tutorial without an Internet connection? GIF

  1. Go here and click the big green ➞ Code button in the top right of the page, then click ➞ Download ZIP.

    Download ZIP

  2. Extract the ZIP and open it. Unfortunately I don't have any more specific instructions because how exactly this is done depends on which operating system you run.

  3. Launch ipython notebook from the folder which contains the notebooks. Open each one of them

    Kernel > Restart & Clear Output

This will clear all the outputs and now you can understand each statement and learn interactively.

If you have git and you know how to use it, you can also clone the repository instead of downloading a zip and extracting it. An advantage with doing it this way is that you don't need to download the whole tutorial again to get the latest version of it, all you need to do is to pull with git and run ipython notebook again.


Authors ✍️

I'm Dr. Milaan Parmar and I have written this tutorial. If you think you can add/correct/edit and enhance this tutorial you are most welcome 🙏

See github's contributors page for details.

If you have trouble with this tutorial please tell me about it by Create an issue on GitHub. and I'll make this tutorial better. This is probably the best choice if you had trouble following the tutorial, and something in it should be explained better. You will be asked to create a GitHub account if you don't already have one.

If you like this tutorial, please give it a star.


Licence 📜

You may use this tutorial freely at your own risk. See LICENSE.

Owner
Milaan Parmar / Милан пармар / _米兰 帕尔马
💼👨‍🏫 Researcher • Python | MATLAB | R • Build🤯 → Test🤞 → Debug✔️ “Change Is the Only Constant in Life" ➶
Milaan Parmar / Милан пармар / _米兰 帕尔马
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Log visualizer for whirl-framework

Lumberjack Log visualizer for whirl-framework Установка pip install -r requirements.txt Как пользоваться python3 lumberjack.py -l путь до лога -o

Vladimir Malinovskii 2 Dec 19, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
Profile and test to gain insights into the performance of your beautiful Python code

Profile and test to gain insights into the performance of your beautiful Python code View Demo - Report Bug - Request Feature QuickPotato in a nutshel

Joey Hendricks 138 Dec 06, 2022
GitHub English Top Charts

Help you discover excellent English projects and get rid of the interference of other spoken language.

kon9chunkit 529 Jan 02, 2023
Create animated and pretty Pandas Dataframe or Pandas Series

Rich DataFrame Create animated and pretty Pandas Dataframe or Pandas Series, as shown below: Installation pip install rich-dataframe Usage Minimal exa

Khuyen Tran 92 Dec 26, 2022
This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds

This package creates clean and beautiful matplotlib plots that work on light and dark backgrounds. Inspired by the work of Edward Tufte.

Nico Schlömer 205 Jan 07, 2023
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
Cryptocurrency Centralized Exchange Visualization

This is a simple one that uses Grafina to visualize cryptocurrency from the Bitkub exchange. This service will make a request to the Bitkub API from your wallet and save the response to Postgresql. G

Popboon Mahachanawong 1 Nov 24, 2021
A guide for using Bootstrap 5 classes in Dash Bootstrap Components V1

dash-bootstrap-cheatsheet This handy interactive cheatsheet makes it easy to use the Bootstrap 5 classes with your Dash app made with the latest versi

10 Dec 22, 2022
A TileDB backend for xarray.

TileDB-xarray This library provides a backend engine to xarray using the TileDB Storage Engine. Example usage: import xarray as xr dataset = xr.open_d

TileDB, Inc. 14 Jun 02, 2021
Datapane is the easiest way to create data science reports from Python.

Datapane Teams | Documentation | API Docs | Changelog | Twitter | Blog Share interactive plots and data in 3 lines of Python. Datapane is a Python lib

Datapane 744 Jan 06, 2023
Here are my graphs for hw_02

Let's Have A Look At Some Graphs! Graph 1: State Mentions in Congressperson's Tweets on 10/01/2017 The graph below uses this data set to demonstrate h

7 Sep 02, 2022
Statistical data visualization using matplotlib

seaborn: statistical data visualization Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing

Michael Waskom 10.2k Dec 30, 2022
The interactive graphing library for Python (includes Plotly Express) :sparkles:

plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En

Plotly 12.7k Jan 05, 2023
Streamlit-template - A streamlit app template based on streamlit-option-menu

streamlit-template A streamlit app template for geospatial applications based on

Qiusheng Wu 41 Dec 10, 2022
Create a table with row explanations, column headers, using matplotlib

Create a table with row explanations, column headers, using matplotlib. Intended usage was a small table containing a custom heatmap.

4 Aug 14, 2022
https://there.oughta.be/a/macro-keyboard

inkkeys Details and instructions can be found on https://there.oughta.be/a/macro-keyboard In contrast to most of my other projects, I decided to put t

Sebastian Staacks 209 Dec 21, 2022