Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

Overview

py-self-organizing-maps

Simple implementation of self-organizing maps (SOMs)

A SOM is an unsupervised method for learning a mapping from a discrete neighborhood-based topology to a data space. This topology is implicitly given as a neighborhood graph. The SOM method assigns to each node of this graph a feature weight vector corresponding to a vector/position in the data space. Over the course of iterations, the node weights of this topology are learned to cover the distribution of samples in the dataset, providing a discrete map over the manifold of the data while encouraging local continuity through the topology. Through determining nearest neighbor node weights to a given data sample, the learned mapping is approximately invertible by basically performing quantization.

The code

This implementation is split into two major parts: An abstract Topology class and the SelfOrganizingMap class. The first one is basically an interface to define a neighborhood-based topology, hence it holds methods such as get_neighbors_of_node(...) or metric(...) or even abstract plotting methods such as plot_map(...). There is already one, arguably the simplest form of topology, implemented, namely regular one-, two- or three-dimensional grid structures as a GridTopology subclass.

The second class handles everything related to the iterative learning process and has an self.topology attribute which is an instance of the other class. It provides a simple fit() method for training and wrapper methods for plotting.

The plotting methods are currently somewhat specialised to the color space example scenario. Feel free to play around with other topologies and other visualisations.

How to use

from som import SelfOrganizingMap
from som import GridTopology

# create a random set of RGB color vectors
N = 1000
X = np.random.randint(0, 255, (N, 3)) # shape = (number_of_samples, feature_dim)

# create the SOM and fit it to the color vectors
topo = GridTopology(height=8, width=8, depth=8, d=2) # d is either 1 or 2 or 3
som = SelfOrganizingMap(topology=topo)
som.fit(X)

# plot the learned map, the nodes in the data space and the node differences
som.plot_map()
som.plot_nodes()
som.plot_differences_map()

Examples

TODOS

  • Initial commit
  • Add comments and documentation
  • Add hexagonal topology
  • Add other dataset examples (e.g. MNIST, face dataset, ...)
  • Use PyTorch for GPU
Owner
Jonas Grebe
Computer science master student @ TU Darmstadt
Jonas Grebe
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
Handout for the tutorial "Creating publication-quality figures with matplotlib"

Handout for the tutorial "Creating publication-quality figures with matplotlib"

JB Mouret 1.9k Jan 02, 2023
High performance, editable, stylable datagrids in jupyter and jupyterlab

An ipywidgets wrapper of regular-table for Jupyter. Examples Two Billion Rows Notebook Click Events Notebook Edit Events Notebook Styling Notebook Pan

J.P. Morgan Chase 75 Dec 15, 2022
Gaphas is the diagramming widget library for Python.

Gaphas Gaphas is the diagramming widget library for Python. Gaphas is a library that provides the user interface component (widget) for drawing diagra

Gaphor 144 Dec 14, 2022
A set of useful perceptually uniform colormaps for plotting scientific data

Colorcet: Collection of perceptually uniform colormaps Build Status Coverage Latest dev release Latest release Docs What is it? Colorcet is a collecti

HoloViz 590 Dec 31, 2022
This component provides a wrapper to display SHAP plots in Streamlit.

streamlit-shap This component provides a wrapper to display SHAP plots in Streamlit.

Snehan Kekre 30 Dec 10, 2022
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
Scientific measurement library for instruments, experiments, and live-plotting

PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a

PyMeasure 445 Jan 04, 2023
Advanced hot reloading for Python

The missing element of Python - Advanced Hot Reloading Details Reloadium adds hot reloading also called "edit and continue" functionality to any Pytho

Reloadware 1.9k Jan 04, 2023
WhatsApp Chat Analyzer is a WebApp and it can be used by anyone to analyze their chat. 😄

WhatsApp-Chat-Analyzer You can view the working project here. WhatsApp chat Analyzer is a WebApp where anyone either tech or non-tech person can analy

Prem Chandra Singh 26 Nov 02, 2022
A simple code for plotting figure, colorbar, and cropping with python

Python Plotting Tools This repository provides a python code to generate figures (e.g., curves and barcharts) that can be used in the paper to show th

Guanying Chen 134 Jan 02, 2023
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
Data Visualization Guide for Presentations, Reports, and Dashboards

This is a highly practical and example-based guide on visually representing data in reports and dashboards.

Anton Zhiyanov 395 Dec 29, 2022
📊 Charts with pure python

A zero-dependency python package that prints basic charts to a Jupyter output Charts supported: Bar graphs Scatter plots Histograms 🍑 📊 👏 Examples

Max Humber 54 Oct 04, 2022
Material for dataviz course at university of Bordeaux

Material for dataviz course at university of Bordeaux

Nicolas P. Rougier 50 Jul 17, 2022
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
Machine learning beginner to Kaggle competitor in 30 days. Non-coders welcome. The program starts Monday, August 2, and lasts four weeks. It's designed for people who want to learn machine learning.

30-Days-of-ML-Kaggle 🔥 About the Hands On Program 💻 Machine learning beginner → Kaggle competitor in 30 days. Non-coders welcome The program starts

Roja Achary 145 Jan 01, 2023
Generate SVG (dark/light) images visualizing (private/public) GitHub repo statistics for profile/website.

Generate daily updated visualizations of GitHub user and repository statistics from the GitHub API using GitHub Actions for any combination of private and public repositories, whether owned or contri

Adam Ross 2 Dec 16, 2022