Aircraft design optimization made fast through modern automatic differentiation

Overview

AeroSandbox ✈️

by Peter Sharpe ( )

Downloads Monthly Downloads Build Status

Overview

AeroSandbox is a Python package for design optimization of engineered systems such as aircraft.

At its heart, AeroSandbox is an optimization suite that combines the ease-of-use of familiar NumPy syntax with the power of modern automatic differentiation.

This automatic differentiation dramatically improves optimization performance on large problems: design problems with tens of thousands of decision variables solve in seconds on a laptop.

AeroSandbox also comes with dozens of end-to-end-differentiable aerospace physics models, allowing you to simultaneously optimize an aircraft's aerodynamics, structures, propulsion, mission trajectory, stability, and more.

VLM Image VLM simulation of a glider, aileron deflections of +-30°. Runtime of 0.35 sec on a typical laptop (i7-8750H).

PANEL Image Panel simulation of a wing (extruded NACA2412, α=15°, AR=4). Note the strong three-dimensionality of the flow near the tip.

Getting Started

Installation

Use pip install aerosandbox[full] for a complete install.

For a lightweight installation with minimal dependencies, use pip install aerosandbox. All optimization, numerics, and physics models are included this headless install, but some visualization dependencies are not installed.

Tutorials, Examples, and Documentation

To get started, check out the tutorials folder here! All tutorials are viewable in-browser, or you can open them as Jupyter notebooks by cloning this repository.

For a more detailed and theory-heavy introduction to AeroSandbox, please see this thesis.

For a yet-more-detailed developer-level description of AeroSandbox modules, please see the developer README.

You can print documentation and examples for any AeroSandbox object by using the built-in help() function (e.g., help(asb.Airplane)). AeroSandbox code is also documented extensively in the source and contains hundreds of unit test examples, so examining the source code can also be useful.

Usage Details

One final point to note: as we're all sensible and civilized here, all inputs and outputs to AeroSandbox are expressed in base SI units, or derived units thereof (e.g, m, N, kg, m/s, J, Pa).

The only exception to this rule is when units are explicitly noted via variable name suffix. For example:

  • battery_capacity -> Joules
  • battery_capacity_watt_hours -> Watt-hours.

All angles are in radians, except for α and β which are in degrees due to long-standing aerospace convention. (In any case, units are marked on all function docstrings.)

If you wish to use other units, consider using aerosandbox.tools.units to convert easily.

Project Details

Contributing

Please feel free to join the development of AeroSandbox - contributions are always so welcome! If you have a change you'd like to make, the easiest way to do that is by submitting a pull request.

The text file CONTRIBUTING.md has more details for developers and power users.

If you've already made several additions and would like to be involved in a more long-term capacity, please message me! Contact information can be found next to my name near the top of this README.

Donating

If you like this software, please consider donating to support development via PayPal or GitHub Sponsors! I'm a grad student, so every dollar that you donate helps wean me off my diet of instant coffee and microwaved ramen noodles.

Bugs

Please, please report all bugs by creating a new issue at https://github.com/peterdsharpe/AeroSandbox/issues!

Versioning

AeroSandbox loosely uses semantic versioning, which should give you an idea of whether or not you can probably expect backward-compatibility and/or new features from any given update. However, the code is a work in progress and things change rapidly - for the time being, please freeze your version of AeroSandbox for any serious deployments. Commercial users: I'm more than happy to discuss consulting work for active AeroSandbox support if this package proves helpful!

Citation

If you find AeroSandbox useful in a research publication, please cite it using the following BibTeX snippet:

@mastersthesis{aerosandbox,
    title = {AeroSandbox: A Differentiable Framework for Aircraft Design Optimization},
    author = {Sharpe, Peter D.},
    school = {Massachusetts Institute of Technology},
    year = {2021}
}

License

MIT License, full terms here.

Stargazers over time

Stargazers over time

Owner
Peter Sharpe
MIT AeroAstro PhD Candidate | Engineering design optimization, aircraft design, and aerodynamics. Hello and welcome to my GitHub! :)
Peter Sharpe
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Do you like Quick, Draw? Well what if you could train/predict doodles drawn inside Streamlit? Also draws lines, circles and boxes over background images for annotation.

Streamlit - Drawable Canvas Streamlit component which provides a sketching canvas using Fabric.js. Features Draw freely, lines, circles, boxes and pol

Fanilo Andrianasolo 325 Dec 28, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022