Hypercomplex Neural Networks with PyTorch

Overview

HyperNets

Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate research in this topic.

Lightweight Convolutional Neural Networks By Hypercomplex Parameterization

Eleonora Grassucci, Aston Zhang, and Danilo Comminiello

[Abstract on OpenReview] [Paper on OpenReview]

Abstract

Hypercomplex neural networks have proved to reduce the overall number of parameters while ensuring valuable performances by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models. Our method grasps the convolution rules and the filters organization directly from data without requiring a rigidly predefined domain structure to follow. The proposed approach is flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multidimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed method operates with 1/n free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts.

Parameterized Hypercomplex Convolutional (PHC) Layer

The core of the approach is the sum of Kronecker products which grasps the convolution rule and the filters organization directly from data. The higlights of our approach is defined in:

def kronecker_product1(self, A, F):
  siz1 = torch.Size(torch.tensor(A.shape[-2:]) * torch.tensor(F.shape[-4:-2]))
  siz2 = torch.Size(torch.tensor(F.shape[-2:]))
  res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) * F.unsqueeze(-4).unsqueeze(-6)
  siz0 = res.shape[:1]
  out = res.reshape(siz0 + siz1 + siz2)
  return out
 
def forward(self, input):
  self.weight = torch.sum(self.kronecker_product1(self.A, self.F), dim=0)
  input = input.type(dtype=self.weight.type())      
  return F.conv2d(input, weight=self.weight, stride=self.stride, padding=self.padding)

Te PHC layer, by setting n=4, is able to subsume the Hamilton rule to organize filters in the convolution as:

Usage

Tutorials

The folder tutorials contain a set of tutorial to understand the Parameterized Hypercomplex Multiplication (PHM) layer and the Parameterized Hypercomplex Convolutional (PHC) layer. We develop simple toy examples to learn the matrices A that define algebra rules in order to demonstrate the effectiveness of the proposed approach.

  • PHM tutorial.ipynb is a simple tutorial which shows how the PHM layer learns the Hamilton product between two pure quaternions.
  • PHC tutorial.ipynb is a simple tutorial which shows how the PHC layer learn the Hamilton rule to organize filters in convolution.
  • Toy regression examples with PHM.ipynb is a notebook containing some regression tasks.

Experiments on Image Classification

To reproduce image classification experiments, please refer to the image-classification folder.

  • pip install -r requirements.txt.
  • Choose the configurations in configs and run the experiment:

python main.py --TextArgs=config_name.txt.

The experiment will be directly tracked on Weight&Biases.

Experiments on Sound Event Detection

To reproduce sound event detection experiments, please refer to the sound-event-detection folder.

  • pip install -r requirements.txt.

We follow the instructions in the original repository for the L3DAS21 dataset:

  • Download the dataset:

python download_dataset.py --task Task2 --set_type train --output_path DATASETS/Task2

python download_dataset.py --task Task2 --set_type dev --output_path DATASETS/Task2

  • Preprocess the dataset:

python preprocessing.py --task 2 --input_path DATASETS/Task2 --num_mics 1 --frame_len 100

Specify num_mics=2 and output_phase=True to perform experiments up to 16-channel inputs.

  • Run the experiment:

python train_baseline_task2.py

Specify the hyperparameters options. We perform experiments with epochs=1000, batch_size=16 and input_channels=4/8/16 on a single Tesla V100-32GB GPU.

  • Run the evaluation:

python evaluate_baseline_task2.py

Specify the hyperparameters options.

More will be added

Soon: PHC layer for 1D convolutions!

Similar reporitories

Quaternion layers are borrowed from:

Cite

Owner
Eleonora Grassucci
PhD Candidate in ICT at ISPAMM Lab, Sapienza Università di Roma, Data Scientist.
Eleonora Grassucci
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
RaceBERT -- A transformer based model to predict race and ethnicty from names

RaceBERT -- A transformer based model to predict race and ethnicty from names Installation pip install racebert Using a virtual environment is highly

Prasanna Parasurama 3 Nov 02, 2022