Hypercomplex Neural Networks with PyTorch

Overview

HyperNets

Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate research in this topic.

Lightweight Convolutional Neural Networks By Hypercomplex Parameterization

Eleonora Grassucci, Aston Zhang, and Danilo Comminiello

[Abstract on OpenReview] [Paper on OpenReview]

Abstract

Hypercomplex neural networks have proved to reduce the overall number of parameters while ensuring valuable performances by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models. Our method grasps the convolution rules and the filters organization directly from data without requiring a rigidly predefined domain structure to follow. The proposed approach is flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multidimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed method operates with 1/n free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts.

Parameterized Hypercomplex Convolutional (PHC) Layer

The core of the approach is the sum of Kronecker products which grasps the convolution rule and the filters organization directly from data. The higlights of our approach is defined in:

def kronecker_product1(self, A, F):
  siz1 = torch.Size(torch.tensor(A.shape[-2:]) * torch.tensor(F.shape[-4:-2]))
  siz2 = torch.Size(torch.tensor(F.shape[-2:]))
  res = A.unsqueeze(-1).unsqueeze(-3).unsqueeze(-1).unsqueeze(-1) * F.unsqueeze(-4).unsqueeze(-6)
  siz0 = res.shape[:1]
  out = res.reshape(siz0 + siz1 + siz2)
  return out
 
def forward(self, input):
  self.weight = torch.sum(self.kronecker_product1(self.A, self.F), dim=0)
  input = input.type(dtype=self.weight.type())      
  return F.conv2d(input, weight=self.weight, stride=self.stride, padding=self.padding)

Te PHC layer, by setting n=4, is able to subsume the Hamilton rule to organize filters in the convolution as:

Usage

Tutorials

The folder tutorials contain a set of tutorial to understand the Parameterized Hypercomplex Multiplication (PHM) layer and the Parameterized Hypercomplex Convolutional (PHC) layer. We develop simple toy examples to learn the matrices A that define algebra rules in order to demonstrate the effectiveness of the proposed approach.

  • PHM tutorial.ipynb is a simple tutorial which shows how the PHM layer learns the Hamilton product between two pure quaternions.
  • PHC tutorial.ipynb is a simple tutorial which shows how the PHC layer learn the Hamilton rule to organize filters in convolution.
  • Toy regression examples with PHM.ipynb is a notebook containing some regression tasks.

Experiments on Image Classification

To reproduce image classification experiments, please refer to the image-classification folder.

  • pip install -r requirements.txt.
  • Choose the configurations in configs and run the experiment:

python main.py --TextArgs=config_name.txt.

The experiment will be directly tracked on Weight&Biases.

Experiments on Sound Event Detection

To reproduce sound event detection experiments, please refer to the sound-event-detection folder.

  • pip install -r requirements.txt.

We follow the instructions in the original repository for the L3DAS21 dataset:

  • Download the dataset:

python download_dataset.py --task Task2 --set_type train --output_path DATASETS/Task2

python download_dataset.py --task Task2 --set_type dev --output_path DATASETS/Task2

  • Preprocess the dataset:

python preprocessing.py --task 2 --input_path DATASETS/Task2 --num_mics 1 --frame_len 100

Specify num_mics=2 and output_phase=True to perform experiments up to 16-channel inputs.

  • Run the experiment:

python train_baseline_task2.py

Specify the hyperparameters options. We perform experiments with epochs=1000, batch_size=16 and input_channels=4/8/16 on a single Tesla V100-32GB GPU.

  • Run the evaluation:

python evaluate_baseline_task2.py

Specify the hyperparameters options.

More will be added

Soon: PHC layer for 1D convolutions!

Similar reporitories

Quaternion layers are borrowed from:

Cite

Owner
Eleonora Grassucci
PhD Candidate in ICT at ISPAMM Lab, Sapienza Università di Roma, Data Scientist.
Eleonora Grassucci
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Processed, version controlled history of Minecraft's generated data and assets

mcmeta Processed, version controlled history of Minecraft's generated data and assets Repository structure Each of the following branches has a commit

Misode 75 Dec 28, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022