PyTorch trainer and model for Sequence Classification

Overview

PyTorch-trainer-and-model-for-Sequence-Classification

After cloning the repository, modify your training data so that the training data is a .csv file and it has 2 columns: Text and Label

In the below example, we will assume that our training data has 3 labels, the name of our training data file is train_data.csv

Example Usage

Import dependencies

import pandas as pd
import numpy as np
from transformers import AutoModel, AutoTokenizer, AutoConfig

from EarlyStopping import *
from modelling import *
from utils import *

Specify arguments

args.pretrained_path will be the path of our pretrained language model

class args:
    fold = 0
    pretrained_path = 'bert-base-uncased'
    max_length = 400
    train_batch_size = 16
    val_batch_size = 64
    epochs = 5
    learning_rate = 1e-5
    accumulation_steps = 2
    num_splits = 5

Create train and validation data

In this example we will train the model using cross-validation. We will split our training data into args.num_splits folds.

df = pd.read_csv('./train_data.csv')
df = create_k_folds(df, args.num_splits)

df_train = df[df['kfold'] == args.fold].reset_index(drop = True)
df_valid = df[df['kfold'] == args.fold].reset_index(drop = True)

Load the language model and its tokenizer

config = AutoConfig.from_pretrained(args.path)
tokenizer = AutoTokenizer.from_pretrained(args.path)
model_transformer = AutoModel.from_pretrained(args.path)

Prepare train and validation dataloaders

features = []
for i in range(len(df_train)):
    features.append(prepare_features(tokenizer, df_train.iloc[i, :].to_dict(), args.max_length))
    
train_dataset = CreateDataset(features)
train_dataloader = create_dataloader(train_dataset, args.train_batch_size, 'train')

features = []
for i in range(len(df_valid)):
    features.append(prepare_features(tokenizer, df_valid.iloc[i, :].to_dict(), args.max_length))
    
val_dataset = CreateDataset(features)
val_dataloader = create_dataloader(val_dataset, args.val_batch_size, 'val')

Use EarlyStopping and customize the score function

NOTE: The customized score function should have 2 parameters: the logits, and the actual label

def accuracy(logits, labels):
    logits = logits.detach().cpu().numpy()
    labels = labels.detach().cpu().numpy()
    pred_classes = np.argmax(logits * (1 / np.sum(logits, axis = -1)).reshape(logits.shape[0], 1), axis = -1)
    pred_classes = pred_classes.reshape(labels.shape)
    
    return np.sum(pred_classes == labels) / labels.shape[0]

es = EarlyStopping(mode = 'max', patience = 3, monitor = 'val_acc', out_path = 'model.bin')
es.monitor_score_function = accuracy

Create and train the model

Calling the fit method, the training process will begin

model = Model(config, model_transformer, num_labels = 3)
model.to('cuda')
num_train_steps = int(len(train_dataset) / args.train_batch_size * args.epochs)
model.fit(args.epochs, args.learning_rate, num_train_steps, args.accumulation_steps, 
          train_dataloader, val_dataloader, es)

NOTE: To complete the cross-validation training process, run the code above again with args.fold equals 1, 2, ..., args.num_splits - 1

Owner
NhanTieu
NhanTieu
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code πŸ“« Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis NΓΊΓ±ez-FernΓ‘ndez 5 Oct 20, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .β–„β–„ Β· β–„Β· β–„β–Œ ▐ β–„ β–„β–„β–„Β· ▐ β–„ β–β–ˆ β–€. β–β–ˆβ–ͺβ–ˆβ–ˆβ–Œβ€’β–ˆβ–Œβ–β–ˆβ–β–ˆ β–„β–ˆβ–ͺ β€’β–ˆβ–Œβ–β–ˆ β–„β–€β–€β–€β–ˆβ–„β–β–ˆβ–Œβ–β–ˆβ–ͺβ–β–ˆβ–β–β–Œ β–ˆβ–ˆβ–€

SynPon 53 Dec 12, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022