Transform-Invariant Non-Negative Matrix Factorization

Overview

Flake8 Linter Pylint Linter Pytest and Coverage Build Documentation Publish to PyPI Open in Streamlit

Logo

Transform-Invariant Non-Negative Matrix Factorization

A comprehensive Python package for Non-Negative Matrix Factorization (NMF) with a focus on learning transform-invariant representations.

The packages supports multiple optimization backends and can be easily extended to handle application-specific types of transforms.

General Introduction

A general introduction to Non-Negative Matrix Factorization and the purpose of this package can be found on the corresponding GitHub Pages.

Installation

For using this package, you will need Python version 3.7 (or higher). The package is available via PyPI.

Installation is easiest using pip:

pip install tnmf

Demos and Examples

The package comes with a streamlit demo and a number of examples that demonstrate the capabilities of the TNMF model. They provide a good starting point for your own experiments.

Online Demo

Without requiring any installation, the demo is accessible via streamlit sharing.

Local Execution

Once the package is installed, the demo and the examples can be conveniently executed locally using the tnmf command:

  • To execute the demo, run tnmf demo.
  • A specific example can be executed by calling tnmf example .

To show the list of available examples, type tnmf example --help.

License

Copyright (c) 2021 Merck KGaA, Darmstadt, Germany

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

The full text of the license can be found in the file LICENSE in the repository root directory.

Contributing

Contributions to the package are always welcome and can be submitted via a pull request. Please note, that you have to agree to the Contributor License Agreement to contribute.

Working with the Code

To checkout the code and set up a working environment with all required Python packages, execute the following commands:

git checkout https://github.com/emdgroup/tnmf.git ./tnmf
cd tmnf
python3 -m virtualenv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Now, you should be able to execute the unit tests by calling pytest to verify that the code is running as expected.

Pull Requests

Before creating a pull request, you should always try to ensure that the automated code quality and unit tests do not fail. This section explains how to run them locally to understand and fix potential issues.

Code Style and Quality

Code style and quality are checked using flake8 and pylint. To execute them, change into the repository root directory, run the following commands and inspect their output:

flake8
pylint tnmf

In order for a pull request to be accaptable, no errors may be reported here.

Unit Tests

Automated unit tests reside inside the folder tnmf/tests. They can be executed via pytest by changing into the repository root directory and running

pytest

Debugging potential failures from the command line might be cumbersome. Most Python IDEs, however, also support pytest natively in their debugger. Again, for a pull request to be acceptable, no failures may be reported here.

Code Coverage

Code coverage in the unit tests is measured using coverage. A coverage report can be created locally from the repository root directory via

coverage run
coverage combine
coverage report

This will output a concise table with an overview of python files that are not fully covered with unit tests along with the line numbers of code that has not been executed. A more detailed, interactive report can be created using

coverage html

Then, you can open the file htmlcov/index.html in a web browser of your choice to navigate through code annotated with coverage data. Required overall coverage to is configured in setup.cfg, under the key fail_under in section [coverage:report].

Building the Documentation

To build the documentation locally, change into the doc subdirectory and run make html. Then, the documentation resides at doc\_build\html\index.html.

An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python

Sentiment analysis on streaming twitter data using Spark Structured Streaming & Python This project is a good starting point for those who have little

Himanshu Kumar singh 2 Dec 04, 2021
Common bioinformatics database construction

biodb Common bioinformatics database construction 1.taxonomy (Substance classification database) Download the database wget -c https://ftp.ncbi.nlm.ni

sy520 2 Jan 04, 2022
Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video.

Datashredder is a simple data corruption engine written in python. You can corrupt anything text, images and video. You can chose the cha

2 Jul 22, 2022
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
A probabilistic programming language in TensorFlow. Deep generative models, variational inference.

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilis

Blei Lab 4.7k Jan 09, 2023
Produces a summary CSV report of an Amber Electric customer's energy consumption and cost data.

Amber Electric Usage Summary This is a command line tool that produces a summary CSV report of an Amber Electric customer's energy consumption and cos

Graham Lea 12 May 26, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
COVID-19 deaths statistics around the world

COVID-19-Deaths-Dataset COVID-19 deaths statistics around the world This is a daily updated dataset of COVID-19 deaths around the world. The dataset c

Nisa Efendioğlu 4 Jul 10, 2022
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
INFO-H515 - Big Data Scalable Analytics

INFO-H515 - Big Data Scalable Analytics Jacopo De Stefani, Giovanni Buroni, Théo Verhelst and Gianluca Bontempi - Machine Learning Group Exercise clas

Yann-Aël Le Borgne 58 Dec 11, 2022
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Using Python to derive insights on particular Pokemon, Types, Generations, and Stats

Pokémon Analysis Andreas Nikolaidis February 2022 Introduction Exploratory Analysis Correlations & Descriptive Statistics Principal Component Analysis

Andreas 1 Feb 18, 2022
DefAP is a program developed to facilitate the exploration of a material's defect chemistry

DefAP is a program developed to facilitate the exploration of a material's defect chemistry. A large number of features are provided and rapid exploration is supported through the use of autoplotting

6 Oct 25, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022