Enterprise Scale NLP with Hugging Face & SageMaker Workshop series

Overview

Workshop: Enterprise-Scale NLP with Hugging Face & Amazon SageMaker

Earlier this year we announced a strategic collaboration with Amazon to make it easier for companies to use Hugging Face Transformers in Amazon SageMaker, and ship cutting-edge Machine Learning features faster. We introduced new Hugging Face Deep Learning Containers (DLCs) to train and deploy Hugging Face Transformers in Amazon SageMaker.

In addition to the Hugging Face Inference DLCs, we created a Hugging Face Inference Toolkit for SageMaker. This Inference Toolkit leverages the pipelines from the transformers library to allow zero-code deployments of models, without requiring any code for pre-or post-processing.

In October and November, we held a workshop series on “Enterprise-Scale NLP with Hugging Face & Amazon SageMaker”. This workshop series consisted out of 3 parts and covers:

  • Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it
  • Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker
  • MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

We recorded all of them so you are now able to do the whole workshop series on your own to enhance your Hugging Face Transformers skills with Amazon SageMaker or vice-versa.

Below you can find all the details of each workshop and how to get started.

🧑🏻‍💻 Github Repository: https://github.com/philschmid/huggingface-sagemaker-workshop-series

📺   Youtube Playlist: https://www.youtube.com/playlist?list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ

Note: The Repository contains instructions on how to access a temporary AWS, which was available during the workshops. To be able to do the workshop now you need to use your own or your company AWS Account.

In Addition to the workshop we created a fully dedicated Documentation for Hugging Face and Amazon SageMaker, which includes all the necessary information. If the workshop is not enough for you we also have 15 additional getting samples Notebook Github repository, which cover topics like distributed training or leveraging Spot Instances.

Workshop 1: Getting Started with Amazon SageMaker: Training your first NLP Transformer model with Hugging Face and deploying it

In Workshop 1 you will learn how to use Amazon SageMaker to train a Hugging Face Transformer model and deploy it afterwards.

  • Prepare and upload a test dataset to S3
  • Prepare a fine-tuning script to be used with Amazon SageMaker Training jobs
  • Launch a training job and store the trained model into S3
  • Deploy the model after successful training

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_1_getting_started_with_amazon_sagemaker

📺  Youtube: https://www.youtube.com/watch?v=pYqjCzoyWyo&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=5s&ab_channel=HuggingFace

Workshop 2: Going Production: Deploying, Scaling & Monitoring Hugging Face Transformer models with Amazon SageMaker

In Workshop 2 learn how to use Amazon SageMaker to deploy, scale & monitor your Hugging Face Transformer models for production workloads.

  • Run Batch Prediction on JSON files using a Batch Transform
  • Deploy a model from hf.co/models to Amazon SageMaker and run predictions
  • Configure autoscaling for the deployed model
  • Monitor the model to see avg. request time and set up alarms

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_2_going_production

📺  Youtube: https://www.youtube.com/watch?v=whwlIEITXoY&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=6&t=61s

Workshop 3: MLOps: End-to-End Hugging Face Transformers with the Hub & SageMaker Pipelines

In Workshop 3 learn how to build an End-to-End MLOps Pipeline for Hugging Face Transformers from training to production using Amazon SageMaker.

We are going to create an automated SageMaker Pipeline which:

  • processes a dataset and uploads it to s3
  • fine-tunes a Hugging Face Transformer model with the processed dataset
  • evaluates the model against an evaluation set
  • deploys the model if it performed better than a certain threshold

🧑🏻‍💻 Code Assets: https://github.com/philschmid/huggingface-sagemaker-workshop-series/tree/main/workshop_3_mlops

📺  Youtube: https://www.youtube.com/watch?v=XGyt8gGwbY0&list=PLo2EIpI_JMQtPhGR5Eo2Ab0_Vb89XfhDJ&index=7

Access Workshop AWS Account

For this workshop you’ll get access to a temporary AWS Account already pre-configured with Amazon SageMaker Notebook Instances. Follow the steps in this section to login to your AWS Account and download the workshop material.

1. To get started navigate to - https://dashboard.eventengine.run/login

setup1

Click on Accept Terms & Login

2. Click on Email One-Time OTP (Allow for up to 2 mins to receive the passcode)

setup2

3. Provide your email address

setup3

4. Enter your OTP code

setup4

5. Click on AWS Console

setup5

6. Click on Open AWS Console

setup6

7. In the AWS Console click on Amazon SageMaker

setup7

8. Click on Notebook and then on Notebook instances

setup8

9. Create a new Notebook instance

setup9

10. Configure Notebook instances

  • Make sure to increase the Volume Size of the Notebook if you want to work with big models and datasets
  • Add your IAM_Role with permissions to run your SageMaker Training And Inference Jobs
  • Add the Workshop Github Repository to the Notebook to preload the notebooks: https://github.com/philschmid/huggingface-sagemaker-workshop-series.git

setup10

11. Open the Lab and select the right kernel you want to do and have fun!

Open the workshop you want to do (workshop_1_getting_started_with_amazon_sagemaker/) and select the pytorch kernel

setup11

Owner
Philipp Schmid
Machine Learning Engineer & Tech Lead at Hugging Face👨🏻‍💻 🤗 Cloud enthusiast ☁️ AWS ML HERO 🦸🏻‍♂️ Nuremberg 🇩🇪
Philipp Schmid
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Dec 26, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

LancoPKU 105 Jan 03, 2023
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

NORESQA: Speech Quality Assessment using Non-Matching References This is a Pytorch implementation for using NORESQA. It contains minimal code to predi

Meta Research 36 Dec 08, 2022
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form.

Neural G2P to portuguese language Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written for

fluz 11 Nov 16, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
Yet Another Neural Machine Translation Toolkit

YANMTT YANMTT is short for Yet Another Neural Machine Translation Toolkit. For a backstory how I ended up creating this toolkit scroll to the bottom o

Raj Dabre 121 Jan 05, 2023