This github repo is for Neurips 2021 paper, NORESQA A Framework for Speech Quality Assessment using Non-Matching References.

Overview

NORESQA: Speech Quality Assessment using Non-Matching References

This is a Pytorch implementation for using NORESQA. It contains minimal code to predict speech quality using NORESQA. Please see our Neurips 2021 paper referenced below for details.

Minimal basic usages as Speech Quality Assessment Metric.

Setup and basic usage

Required python libraries (latest): Pytorch with GPU support + Scipy + Numpy (>=1.14) + Librosa. Install all dependencies in a conda environment by using:

conda env create -f requirements.yml

Activate the created environment by:

conda activate noresqa

Additional notes:

  • Warning: Make sure your libraries (Cuda, Cudnn,...) are compatible with the pytorch version you're using or the code will not run.
  • Tested on Nvidia GeForce RTX 2080 GPU with Cuda (>=9.2) and CuDNN (>=7.3.0). CPU mode should also work.
  • The current pretrained models support sampling rate = 16KHz. The provided code automatically resamples the recording to 16KHz.

Please run the metric by using:

usage:

python main.py --GPU_id -1 --mode file --test_file path1 --nmr path2

arguments:
--GPU_id         [-1 or 0,1,2,3,...] specify -1 for CPU, and 0,1,2,3 .. as gpu numbers
--mode           [file,list] using single nmr or a list of nmr
--test_file      [path1] -> path of the test recording
--nmr            [path2 of file, or txt file with filenames]

The default output of the code should look like:

Probaility of the test speech cleaner than the given NMR = 0.11526459
NORESQA score of the test speech with respect to the given NMR = 18.595860697038006

Some GPU's are non-deterministic, and so the results could vary slightly in the lsb.

Please also note that the model inherently works when the size of the input recordings are same. If they are not, then the size of the reference recording is adjusted to match the size of the test recording.

Please see main.py for more information on how to use this for your task.

Citation

If you use this repository, please use the following to cite.

@inproceedings{
manocha2021noresqa,
title={{NORESQA}: A Framework for Speech Quality Assessment using Non-Matching References},
author={Pranay Manocha and Buye Xu and Anurag Kumar},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=RwASmRpLp-}
}

License

The majority of NORESQA is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Librosa is licensed under the ISC license; Pytorch and Numpy are licensed under the BSD license; Scipy and Scikit-learn is licensed under the BSD-3; Libsndfile is licensed under GNU LGPL; Pyyaml is licensed under MIT License.

Owner
Meta Research
Meta Research
Conditional probing: measuring usable information beyond a baseline

Conditional probing: measuring usable information beyond a baseline

John Hewitt 20 Dec 15, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress

Chen Liang 16 Dec 11, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
A retro text-to-speech bot for Discord

hawking A retro text-to-speech bot for Discord, designed to work with all of the stuff you might've seen in Moonbase Alpha, using the existing command

Nick Schorr 23 Dec 25, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
基于“Seq2Seq+前缀树”的知识图谱问答

KgCLUE-bert4keras 基于“Seq2Seq+前缀树”的知识图谱问答 简介 博客:https://kexue.fm/archives/8802 环境 软件:bert4keras=0.10.8 硬件:目前的结果是用一张Titan RTX(24G)跑出来的。 运行 第一次运行的时候,会给知

苏剑林(Jianlin Su) 65 Dec 12, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022