Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Overview

OoD_Gen-Chest_Xray

Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

Requirements (Installations)

Install the following libraries/packages with pip

torch 
torchvision
torchxrayvsion

Four (4) Pathologies, Four (4) Datasets, & 12-Fold Cross-Validation

There are 12 different training, validation and test settings generated by combining 4 different Chest X-ray datasets (NIH ChestX-ray8 dataset, PadChest dataset, CheXpert, and MIMIC-CXR). These 12 settings are broken down into 6 splits (ranging from 0 to 5) that can be called by passing the argument --split=<split>. For each split, you have the option to choose between 2 validation datasets by passing the argument --valid_data=<name of valid dataset>. The dataset names are condensed as short strings: "nih"= NIH ChestX-ray8 dataset, "pc" = PadChest dataset, "cx" = CheXpert, and "mc" = MIMIC-CXR.
For each setting, we compute the ROC-AUC for the following chest x-ray pathologies (labels): Cardiomegaly, Pneumonia, Effusion, Edema, Atelectasis, Consolidation, and Pneumothorax.

For each split, you train on two (2) datasets, validate on one (1) and test on the remaining one (1).
The chest.py file contains code to run the models in this study.

To finetune or perform feature extraction with ImageNet weights pass the --pretrained and --feat_extract arguments respectively

Train Using Baseline Model (Merged Datasets)

To train a DenseNet-121 Baseline model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --merge_train --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

Note that for the first split, PadChest is automatically selected as the test_data, when you pass MIMIC-CXR as the validation data, and vice versa.

Train Balanced Mini-Batch Sampling

To train a DenseNet-121 Balanced Mini-Batch Sampling model by fine-tuning on the first split, and validate on the MIMIC-CXR dataset, with seed=0 run the following code:

python chest.py --arch densenet121 --pretrained --weight_decay=0.0 --split 0 --valid_data mc --seed 0

and always pass --weight_decay=0.0

If no model architecture is specified, the code trains all the following architectures: resnet50, and densenet121.

Inference using the XRV model

To perform inference using the DenseNet model with pretrained weights from torchxrayvision, run the following line of code:

python xrv_test.py --dataset_name pc --seed 0

Note that you can pass any of the arguments pc, mc, cx or nih to --dataset_name to run inference on PadChest, MIMIC-CXR, CheXpert and ChestX-Ray8 respectively.

Owner
Enoch Tetteh
Alumna: 1) African Masters in Machine Intelligence. 2) MILA - QUEBEC AI Institute Focus - computer vision and language processing.
Enoch Tetteh
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
Repo for EchoVPR: Echo State Networks for Visual Place Recognition

EchoVPR Repo for EchoVPR: Echo State Networks for Visual Place Recognition Currently under development Dirs: data: pre-collected hidden representation

Anil Ozdemir 4 Oct 04, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
LeetCode Solutions https://t.me/tenvlad

leetcode LeetCode Solutions groupped by common patterns YouTube: https://www.youtube.com/c/vladten Telegram: https://t.me/nilinterface Problems source

Vlad Ten 158 Dec 29, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
QI-Q RoboMaster2022 CV Algorithm

QI-Q RoboMaster2022 CV Algorithm

2 Jan 10, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021