Sum-Product Probabilistic Language

Overview

Actions Status pypi

Sum-Product Probabilistic Language

SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic inference queries. The language handles continuous, discrete, and mixed-type probability distributions; many-to-one numerical transformations; and a query language that includes general predicates on random variables.

Users express generative models as probabilistic programs with standard imperative constructs, such as arrays, if/else branches, for loops, etc. The program is then translated to a sum-product expression (a generalization of sum-product networks) that statically represents the probability distribution of all random variables in the program. This expression is used to deliver answers to probabilistic inference queries.

A system description of SPPL is given in the following paper:

SPPL: Probabilistic Programming with Fast Exact Symbolic Inference. Saad, F. A.; Rinard, M. C.; and Mansinghka, V. K. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, June 20-25, Virtual, Canada. ACM, New York, NY, USA. 2021. https://doi.org/10.1145/3453483.3454078.

Installation

This software is tested on Ubuntu 18.04 and requires a Python 3.6+ environment. SPPL is available on PyPI

$ python -m pip install sppl

To install the Jupyter interface, first obtain the system-wide dependencies in requirements.sh and then run

$ python -m pip install 'sppl[magics]'

Examples

The easiest way to use SPPL is via the browser-based Jupyter interface, which allows for interactive modeling, querying, and plotting. Refer to the .ipynb notebooks under the examples directory.

Benchmarks

Please refer to the artifact at the ACM Digital Library: https://doi.org/10.1145/3453483.3454078

Guide to Source Code

Please refer to GUIDE.md for a description of the main source files in this repository.

Tests

To run the test suite as a user, first install the test dependencies:

$ python -m pip install 'sppl[tests]'

Then run the test suite:

$ python -m pytest --pyargs sppl

To run the test suite as a developer:

  • To run crash tests: $ ./check.sh
  • To run integration tests: $ ./check.sh ci
  • To run a specific test: $ ./check.sh [<pytest-opts>] /path/to/test.py
  • To run the examples: $ ./check.sh examples
  • To build a docker image: $ ./check.sh docker
  • To generate a coverage report: $ ./check.sh coverage

To view the coverage report, open htmlcov/index.html in the browser.

Language Reference

Coming Soon!

Citation

To cite this work, please use the following BibTeX.

@inproceedings{saad2021sppl,
title           = {{SPPL:} Probabilistic Programming with Fast Exact Symbolic Inference},
author          = {Saad, Feras A. and Rinard, Martin C. and Mansinghka, Vikash K.},
booktitle       = {PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Design and Implementation},
pages           = {804--819},
year            = 2021,
location        = {Virtual, Canada},
publisher       = {ACM},
address         = {New York, NY, USA},
doi             = {10.1145/3453483.3454078},
address         = {New York, NY, USA},
keywords        = {probabilistic programming, symbolic execution, static analysis},
}

License

Apache 2.0; see LICENSE.txt

Acknowledgments

The logo was designed by McCoy R. Becker.

Owner
MIT Probabilistic Computing Project
MIT Probabilistic Computing Project
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022