Real-time Neural Representation Fusion for Robust Volumetric Mapping

Overview

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping

Paper | Supplementary

teaser

This repository contains the implementation of the paper:

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping
Stefan Lionar*, Lukas Schmid*, Cesar Cadena, Roland Siegwart, and Andrei Cramariuc
International Conference on 3D Vision (3DV) 2021
(*equal contribution)

If you find our code or paper useful, please consider citing us:

@inproceedings{lionar2021neuralblox,
 title = {NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping},
 author={Stefan Lionar, Lukas Schmid, Cesar Cadena, Roland Siegwart, Andrei Cramariuc},
 booktitle = {International Conference on 3D Vision (3DV)},
 year = {2021}}

Installation

conda env create -f environment.yaml
conda activate neuralblox
pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Note: Make sure torch-scatter and PyTorch have the same cuda toolkit version. If PyTorch has a different cuda toolkit version, run:

conda install pytorch==1.4.0 cudatoolkit=10.1 -c pytorch

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Optional: For a noticeably faster inference on CPU-only settings, upgrade PyTorch and PyTorch Scatter to a newer version:

pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install --upgrade --no-deps --force-reinstall torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.7.1+cu101.html

Demo

To generate meshes using our pretrained models and evaluation dataset, you can select several configurations below and run it.

python generate_sequential.py configs/fusion/pretrained/redwood_0.5voxel_demo.yaml
python generate_sequential.py configs/fusion/pretrained/redwood_1voxel_demo.yaml
python generate_sequential.py configs/fusion/pretrained/redwood_1voxel_demo_cpu.yaml --no_cuda
  • The mesh will be generated to out_mesh/mesh folder.
  • To add noise, change the values under test.scene.noise in the config files.

Training backbone encoder and decoder

The backbone encoder and decoder mainly follow Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks) with some modifications adapted for our use case. Our pretrained model is provided in this repository.

Dataset

ShapeNet

The proprocessed ShapeNet dataset is from Occupancy Networks (https://github.com/autonomousvision/occupancy_networks). You can download it (73.4 GB) by running:

bash scripts/download_shapenet_pc.sh

After that, you should have the dataset in data/ShapeNet folder.

Training

To train the backbone network from scratch, run

python train_backbone.py configs/pointcloud/shapenet_grid24_pe.yaml

Latent code fusion

The pretrained fusion network is also provided in this repository.

Training dataset

To train from scratch, you can download our preprocessed Redwood Indoor RGBD Scan dataset by running:

bash scripts/download_redwood_preprocessed.sh

We align the gravity direction to be the same as ShapeNet ([0,1,0]) and convert the RGBD scans following ShapeNet format.

More information about the dataset is provided here: http://redwood-data.org/indoor_lidar_rgbd/.

Training

To train the fusion network from scratch, run

python train_fusion.py configs/fusion/train_fusion_redwood.yaml

Adjust the path to the encoder-decoder model in training.backbone_file of the .yaml file if necessary.

Generation

python generate_sequential.py CONFIG.yaml

If you are interested in generating the meshes from other dataset, e.g., ScanNet:

  • Structure the dataset following the format in demo/redwood_apartment_13k.
  • Adjust path, data_preprocessed_interval and intrinsics in the config file.
  • If necessary, align the dataset to have the same gravity direction as ShapeNet by adjusting align in the config file.

For example,

# ScanNet scene ID 0
python generate_sequential.py configs/fusion/pretrained/scannet_000.yaml

# ScanNet scene ID 24
python generate_sequential.py configs/fusion/pretrained/scannet_024.yaml

To use your own models, replace test.model_file (encoder-decoder) and test.merging_model_file (fusion network) in the config file to the path of your models.

Evaluation

You can evaluate the predicted meshes with respect to a ground truth mesh by following the steps below:

  1. Install CloudCompare
sudo apt install cloudcompare
  1. Copy a ground truth mesh (no RGB information expected) to evaluation/mesh_gt
  2. Copy prediction meshes to evaluation/mesh_pred
  3. If the prediction mesh does not contain RGB information, such as the output from our method, run:
python evaluate.py

Else, if it contains RGB information, such as the output from Voxblox, run:

python evaluate.py --color_mesh

We provide the trimmed mesh used for the ground truth of our quantitative evaluation. It can be downloaded here: https://polybox.ethz.ch/index.php/s/gedC9YpQPMPiucU/download

Lastly, to evaluate prediction meshes with respect to the trimmed mesh as ground truth, run:

python evaluate.py --demo

Or for colored mesh (e.g. from Voxblox):

python evaluate.py --demo --color_mesh

evaluation.csv will be generated to evaluation directory.

Acknowledgement

Some parts of the code are inherited from the official repository of Convolutional Occupancy Networks (https://github.com/autonomousvision/convolutional_occupancy_networks).

Owner
ETHZ ASL
ETHZ ASL
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Simple image captioning model - CLIP prefix captioning.

Simple image captioning model - CLIP prefix captioning.

688 Jan 04, 2023
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022