A plug-and-play library for neural networks written in Python

Overview

Synapses

A plug-and-play library for neural networks written in Python!

# run
pip install synapses-py==7.4.1
# in the directory of your project

Neural Network

Create a neural network

Import Synapses, call NeuralNetwork.init and provide the size of each layer.

from synapses_py import NeuralNetwork, ActivationFunction, DataPreprocessor, Statistics
layers = [4, 6, 5, 3]
neuralNetwork = NeuralNetwork.init(layers)

neuralNetwork has 4 layers. The first layer has 4 input nodes and the last layer has 3 output nodes. There are 2 hidden layers with 6 and 5 neurons respectively.

Get a prediction

inputValues = [1.0, 0.5625, 0.511111, 0.47619]
prediction = \
        NeuralNetwork.prediction(neuralNetwork, inputValues)

prediction should be something like [ 0.8296, 0.6996, 0.4541 ].

Note that the lengths of inputValues and prediction equal to the sizes of input and output layers respectively.

Fit network

learningRate = 0.5
expectedOutput = [0.0, 1.0, 0.0]
fitNetwork = \
        NeuralNetwork.fit(
            neuralNetwork,
            learningRate,
            inputValues,
            expectedOutput
        )

fitNetwork is a new neural network trained with a single observation.

To train a neural network, you should fit with multiple datapoints

Create a customized neural network

The activation function of the neurons created with NeuralNetwork.init, is a sigmoid one. If you want to customize the activation functions and the weight distribution, call NeuralNetwork.customizedInit.

def activationF(layerIndex):
    if layerIndex == 0:
        return ActivationFunction.sigmoid
    elif layerIndex == 1:
        return ActivationFunction.identity
    elif layerIndex == 2:
        return ActivationFunction.leakyReLU
    else:
        return ActivationFunction.tanh

def weightInitF(_layerIndex):
    return 1.0 - 2.0 * random()

customizedNetwork = \
        NeuralNetwork.customizedInit(
            layers,
            activationF,
            weightInitF
        )

Visualization

Call NeuralNetwork.toSvg to take a brief look at its svg drawing.

Network Drawing

The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

svg = NeuralNetwork.toSvg(customizedNetwork)

Save and load a neural network

JSON instances are compatible across platforms! We can generate, train and save a neural network in Python and then load and make predictions in Javascript!

toJson

Call NeuralNetwork.toJson on a neural network and get a string representation of it. Use it as you like. Save json in the file system or insert into a database table.

json = NeuralNetwork.toJson(customizedNetwork)

ofJson

loadedNetwork = NeuralNetwork.ofJson(json)

As the name suggests, NeuralNetwork.ofJson turns a json string into a neural network.

Encoding and decoding

One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0. Minmax normalization scales continuous attributes into values between 0.0 and 1.0. You can use DataPreprocessor for datapoint encoding and decoding.

The first parameter of DataPreprocessor.init is a list of tuples (attributeName, discreteOrNot).

setosaDatapoint = {
    "petal_length": "1.5",
    "petal_width": "0.1",
    "sepal_length": "4.9",
    "sepal_width": "3.1",
    "species": "setosa"
}

versicolorDatapoint = {
    "petal_length": "3.8",
    "petal_width": "1.1",
    "sepal_length": "5.5",
    "sepal_width": "2.4",
    "species": "versicolor"
}

virginicaDatapoint = {
    "petal_length": "6.0",
    "petal_width": "2.2",
    "sepal_length": "5.0",
    "sepal_width": "1.5",
    "species": "virginica"
}

datasetList = [ setosaDatapoint,
                versicolorDatapoint,
                virginicaDatapoint ]

dataPreprocessor = \
        DataPreprocessor.init(
             [ ("petal_length", False),
               ("petal_width", False),
               ("sepal_length", False),
               ("sepal_width", False),
               ("species", True) ],
             iter(datasetList)
        )

encodedDatapoints = map(lambda x:
        DataPreprocessor.encodedDatapoint(dataPreprocessor, x),
        datasetList
)

encodedDatapoints equals to:

[ [ 0.0     , 0.0     , 0.0     , 1.0     , 0.0, 0.0, 1.0 ],
  [ 0.511111, 0.476190, 1.0     , 0.562500, 0.0, 1.0, 0.0 ],
  [ 1.0     , 1.0     , 0.166667, 0.0     , 1.0, 0.0, 0.0 ] ]

Save and load the preprocessor by calling DataPreprocessor.toJson and DataPreprocessor.ofJson.

Evaluation

To evaluate a neural network, you can call Statistics.rootMeanSquareError and provide the expected and predicted values.

expectedWithOutputValuesList = \
        [ ( [ 0.0, 0.0, 1.0], [ 0.0, 0.0, 1.0] ),
          ( [ 0.0, 0.0, 1.0], [ 0.0, 1.0, 1.0] ) ]

expectedWithOutputValuesIter = \
        iter(expectedWithOutputValuesList)

rmse = Statistics.rootMeanSquareError(
                        expectedWithOutputValuesIter
)
Owner
Dimos Michailidis
Dimos Michailidis
FairFuzz: AFL extension targeting rare branches

FairFuzz An AFL extension to increase code coverage by targeting rare branches. FairFuzz has a particular advantage on programs with highly nested str

Caroline Lemieux 222 Nov 16, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

dev 34 Dec 27, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023