A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

Overview

c is for Camera

A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

The purpose of this project is to explore and understand the logic in the mechanisms of a camera by using object-oriented programming to represent real-world objects. It's also a way to appreciate the intricate mechanical logic embodied in a device like a camera.

'Canonet G-III QL17'

It aims towards completeness in its modelling of the real world. For example, if you open the back of the camera in daylight with a partially exposed film, it will ruin the film.

See the c is for Camera documentation.

A quick tour

Clone the repository:

git clone https://github.com/evildmp/C-is-for-Camera.git

or:

git clone [email protected]:evildmp/C-is-for-Camera.git

In the C-is-for-Camera directory, start a Python 3 shell.

>>> from camera import Camera
>>> c = Camera()

See the camera's state:

>>> c.state()
================== Camera state =================

------------------ Controls ---------------------
Selected speed:            1/120

------------------ Mechanical -------------------
Back closed:               True
Lens cap on:               False
Film advance mechanism:    False
Frame counter:             0
Shutter cocked:            False
Shutter timer:             1/128 seconds
Iris aperture:             ƒ/16
Camera exposure settings:  15.0 EV

------------------ Metering ---------------------
Light meter reading:        4096 cd/m^2
Exposure target:            15.0 EV
Mode:                       Shutter priority
Battery:                    1.44 V
Film speed:                 100 ISO

------------------ Film -------------------------
Speed:                      100 ISO
Rewound into cartridge:     False
Exposed frames:             0 (of 24)
Ruined:                     False

------------------ Environment ------------------
Scene luminosity:           4096 cd/m^2

Advance the film:

>>> c.film_advance_mechanism.advance()
On frame 0 (of 24)
Advancing film
On frame 1 (of 24)
Cocking shutter
Cocked

Release the shutter:

>>> c.shutter.trip()
Shutter openening for 1/128 seconds
Shutter closes
Shutter uncocked
'Tripped'

It's not possible to advance the mechanism twice without releasing the shutter:

>>> c.film_advance_mechanism.advance()
On frame 1 (of 24)
Advancing film
On frame 2 (of 24)
Cocking shutter
Cocked
>>> c.film_advance_mechanism.advance()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/daniele/Repositories/camera/camera.py", line 56, in advance
    raise self.AlreadyAdvanced
camera.AlreadyAdvanced

If you open the back in daylight it ruins the film:

>>> c.back.open()
Opening back
Resetting frame counter to 0
'Film is ruined'

Close the back and rewind the film:

>>> c.back.close()
Closing back
>>> c.film_rewind_mechanism.rewind()
Rewinding film
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
M3DSSD: Monocular 3D Single Stage Object Detector

M3DSSD: Monocular 3D Single Stage Object Detector Setup pytorch 0.4.1 Preparation Download the full KITTI detection dataset. Then place a softlink (or

mumianyuxin 64 Dec 27, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023