This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Overview

Stability Audit

This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic AI and Crystal. This codebase supports the 2021 manuscript entitled "External Stability Auditing to Test the Validity of Personality Prediction in AI Hiring," authored by Alene K. Rhea, Kelsey Markey, Lauren D'Arinzo, Hilke Schellmann, Mona Sloane, Paul Squires, and Julia Stoyanovich.

Code

The Jupyter notebook analysis.ipynb reads in the survey and system output data, and performs all stability analysis. The notebook begins with a demographic summarization, and then estimates stability metrics for each facet experiment as described in the manuscript.

Spearman's rank correlation is used to measure rank-order stability, two-tailed Wilcoxon signed rank testing is used to measure locational stability, and normalized L1 distance is used to measure total change across each facet. Medians of each facet treatment are estimated as well. Results are saved to the results directory, organized by metric and by system (Humantic AI and Crystal). Subgroup analysis is performed for rank-order stability and total change. Highlighting is employed to indicate correlations below 0.95 and 0.90, and Wilcoxon p-values below the Bonferroni and Benjamini-Hochberg corrected thresholds. Scatterplots are produced to compare the outputs from each pair of facet treatments. Boxplots illustrate total change. Boxplots comparing relevant subgroup analysis for each facet are produced as well.

Data

Survey

Anonymized survey results are saved in data/survey.csv. Columns described in the table below.

Column Type Description Values
Participant_ID str Unique ID used to identify participant. "ID2" - "ID101" (missing IDs indicate potential subjects were screened out of participation)
gender str Participant gender, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. ["Male" "Female" "Other Gender"]
race str Participant race, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. Empty entries indicates participants declined to self-identify their race in the survey. ["Asian" "White" "Other Race" NaN]
birth_country str Participant birth country, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. Empty entries indicates participants declined to provide their birth country in the survey. ["China" "India" "USA" "Other Country" NaN]
primary_language str Primary language of participant, as reported in the survey. ["English" "Other Langauge"]
resume bool Boolean flag indicating whether participant provided a resume in the survey. ["True" "False"]
linkedin bool Boolean flag indicating whether participant provided a LinkedIn in the survey. ["True" "False"]
twitter bool Boolean flag indicating whether participant provided a public Twitter handle in the survey. ["True" "False"]
linkedin_in_orig_resume bool Boolean flag indicating whether participant included a reference to their LinkedIn in the resume they submitted. Empty entries indicate participants did not submit a resume. ["True" "False" NaN]
orig_embed_type str Description of the method by which the participant referenced their LinkedIn in their submitted resume. Empty entries indicate participant did not submit a resume containing a reference to LinkedIn. ["Full url hyperlinked" "Full url not hyperlinked" "Text hyperlinked" "Other not hyperlinked" NaN]
orig_file_type str Filetype of the resume submitted by the participant. Empty entries indicate participants did not submit a resume. ["pdf" "docx" "txt" NaN]

Humantic AI and Crystal Output

Output from Humantic AI and Crystal is saved in the data directory. Each run is saved as a CSV and is named with its Run ID. Tables 3 and 4 in the manuscript (reproduced below) provide details of each run. Each file contains one row for each submitted input. Participant_ID provides a unique key, and output_success is a Boolean flag indicating that the system successfully produced output from the given input. Wherever output_success is true, there will be numeric predictions for each trait. Crystal results contain predictions for DiSC traits, and Humantic AI results contain predictions for DiSC traits and Big Five traits.

Run ID System Description Run Dates
HRo1 Humantic AI Original Resume 11/23/2020 - 01/14/2021
HRi1 Humantic AI De-Identified Resume 03/20/2021 - 03/28/2021
HRi2 Humantic AI De-Identified Resume 04/20/2021 - 04/28/2021
HRi3 Humantic AI De-Identified Resume 04/20/2021 - 04/28/2021
HRd1 Humantic AI DOCX Resume 03/20/2021 - 03/28/2021
HRu1 Humantic AI URL-Embedded Resume 04/09/2021 - 04/11/2021
HL1 Humantic AI LinkedIn 11/23/2020 - 01/14/2021
HL2 Humantic AI LinkedIn 08/10/2021 - 08/11/2021
HT1 Humantic AI Twitter 11/23/2020 - 01/14/2021
HT2 Humantic AI Twitter 08/10/2021 - 08/11/2021
CRr1 Crystal Raw Text Resume 03/31/2021 - 04/02/2021
CRr2 Crystal Raw Text Resume 05/01/2021 - 05/03/2021
CRr3 Crystal Raw Text Resume 05/01/2021 - 05/03/2021
CRp1 Crystal PDF Resume 11/23/2020 - 01/14/2021
CL1 Crystal LinkedIn 11/23/2020 - 01/14/2021
CL2 Crystal LinkedIn 09/13/2020 - 09/16/2021
Owner
Data, Responsibly
responsible data management: platform and tools
Data, Responsibly
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation".

FPS-Net Code for "FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation", accepted by ISPRS journal of Photogrammetry

15 Nov 30, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023