This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Overview

Stability Audit

This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic AI and Crystal. This codebase supports the 2021 manuscript entitled "External Stability Auditing to Test the Validity of Personality Prediction in AI Hiring," authored by Alene K. Rhea, Kelsey Markey, Lauren D'Arinzo, Hilke Schellmann, Mona Sloane, Paul Squires, and Julia Stoyanovich.

Code

The Jupyter notebook analysis.ipynb reads in the survey and system output data, and performs all stability analysis. The notebook begins with a demographic summarization, and then estimates stability metrics for each facet experiment as described in the manuscript.

Spearman's rank correlation is used to measure rank-order stability, two-tailed Wilcoxon signed rank testing is used to measure locational stability, and normalized L1 distance is used to measure total change across each facet. Medians of each facet treatment are estimated as well. Results are saved to the results directory, organized by metric and by system (Humantic AI and Crystal). Subgroup analysis is performed for rank-order stability and total change. Highlighting is employed to indicate correlations below 0.95 and 0.90, and Wilcoxon p-values below the Bonferroni and Benjamini-Hochberg corrected thresholds. Scatterplots are produced to compare the outputs from each pair of facet treatments. Boxplots illustrate total change. Boxplots comparing relevant subgroup analysis for each facet are produced as well.

Data

Survey

Anonymized survey results are saved in data/survey.csv. Columns described in the table below.

Column Type Description Values
Participant_ID str Unique ID used to identify participant. "ID2" - "ID101" (missing IDs indicate potential subjects were screened out of participation)
gender str Participant gender, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. ["Male" "Female" "Other Gender"]
race str Participant race, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. Empty entries indicates participants declined to self-identify their race in the survey. ["Asian" "White" "Other Race" NaN]
birth_country str Participant birth country, as reported in the survey. Pre-processed to mask rare responses in order to preserve anonymity. Empty entries indicates participants declined to provide their birth country in the survey. ["China" "India" "USA" "Other Country" NaN]
primary_language str Primary language of participant, as reported in the survey. ["English" "Other Langauge"]
resume bool Boolean flag indicating whether participant provided a resume in the survey. ["True" "False"]
linkedin bool Boolean flag indicating whether participant provided a LinkedIn in the survey. ["True" "False"]
twitter bool Boolean flag indicating whether participant provided a public Twitter handle in the survey. ["True" "False"]
linkedin_in_orig_resume bool Boolean flag indicating whether participant included a reference to their LinkedIn in the resume they submitted. Empty entries indicate participants did not submit a resume. ["True" "False" NaN]
orig_embed_type str Description of the method by which the participant referenced their LinkedIn in their submitted resume. Empty entries indicate participant did not submit a resume containing a reference to LinkedIn. ["Full url hyperlinked" "Full url not hyperlinked" "Text hyperlinked" "Other not hyperlinked" NaN]
orig_file_type str Filetype of the resume submitted by the participant. Empty entries indicate participants did not submit a resume. ["pdf" "docx" "txt" NaN]

Humantic AI and Crystal Output

Output from Humantic AI and Crystal is saved in the data directory. Each run is saved as a CSV and is named with its Run ID. Tables 3 and 4 in the manuscript (reproduced below) provide details of each run. Each file contains one row for each submitted input. Participant_ID provides a unique key, and output_success is a Boolean flag indicating that the system successfully produced output from the given input. Wherever output_success is true, there will be numeric predictions for each trait. Crystal results contain predictions for DiSC traits, and Humantic AI results contain predictions for DiSC traits and Big Five traits.

Run ID System Description Run Dates
HRo1 Humantic AI Original Resume 11/23/2020 - 01/14/2021
HRi1 Humantic AI De-Identified Resume 03/20/2021 - 03/28/2021
HRi2 Humantic AI De-Identified Resume 04/20/2021 - 04/28/2021
HRi3 Humantic AI De-Identified Resume 04/20/2021 - 04/28/2021
HRd1 Humantic AI DOCX Resume 03/20/2021 - 03/28/2021
HRu1 Humantic AI URL-Embedded Resume 04/09/2021 - 04/11/2021
HL1 Humantic AI LinkedIn 11/23/2020 - 01/14/2021
HL2 Humantic AI LinkedIn 08/10/2021 - 08/11/2021
HT1 Humantic AI Twitter 11/23/2020 - 01/14/2021
HT2 Humantic AI Twitter 08/10/2021 - 08/11/2021
CRr1 Crystal Raw Text Resume 03/31/2021 - 04/02/2021
CRr2 Crystal Raw Text Resume 05/01/2021 - 05/03/2021
CRr3 Crystal Raw Text Resume 05/01/2021 - 05/03/2021
CRp1 Crystal PDF Resume 11/23/2020 - 01/14/2021
CL1 Crystal LinkedIn 11/23/2020 - 01/14/2021
CL2 Crystal LinkedIn 09/13/2020 - 09/16/2021
Owner
Data, Responsibly
responsible data management: platform and tools
Data, Responsibly
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022