Anytime Learning At Macroscale

Related tags

Machine Learningalma
Overview

On Anytime Learning At Macroscale

Learning from sequential data dumps

(key) Requirements

  • Python 3.7
  • Pytorch 1.9.0
  • Hydra 1.1.0 (pip install hydra-core & pip install hydra-submitit-launcher)

Structure

├── crlapi           
  ├── benchmark.py    # Creates the data stream, feeds it to the model and evaluates it
  ├── core.py         # Abstract classes for 
  ├── logger.py   
  ├── sl
    ├── architectures
      ├── ...         # NN architectures used in this project
    ├── clmodels
      ├── ...         # Models (e.g. Single, gEns, ..., )
    ├── streams
      ├── ...         # CIFAR and MNIST stream implementatins

Running Experiments

To run experiments, you need to call the dataset specific run file, and you need to pass the configuration of the run. We have place the configurations in the previous directory (../configs). The config structure is as follows

    ├── configs
        ├── mnist
           ├── run.py                 # run file
           ├── test_usage_gmoe.yaml   # This is the "gMoE" model
           ├── test_finetune_mlp.yaml # This is the "Single Model"
           ... 
        ├── cifar
           ├── run.py                 # run file
           ├── test_finetune_vgg.yaml # This is the "Single Model"
           ├── test_usage_gmoe.yaml   # This is the "gMoE" model
           ...

To run an e.g. mnist gMoE run, the command is (launched from the directory just above (so cd ..)

PYTHONPATH=./ python configs/mnist/run.py -cn test_usage_gmoe n_megabatches=2 replay=1 clmodel.max_epochs=200 

Important arguments

n_megabatches : controls the number of megabatches. So n_megabatches=1 is your regular full dataset training
replay : whether to use replay or not
clmodel.init_from_scratch : whether to reinitialize the model at every MB. Should only be used when replay=1
device : use cuda or cpu depending on your hardware

License

alma is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Meta Research
Meta Research
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

MilaGraph 1.1k Jan 08, 2023
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
This repository contains the code to predict house price using Linear Regression Method

House-Price-Prediction-Using-Linear-Regression The dataset I used for this personal project is from Kaggle uploaded by aariyan panchal. Link of Datase

0 Jan 28, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022