Intrinsic Image Harmonization

Overview

Intrinsic Image Harmonization [Paper]

Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng

Here we provide PyTorch implementation and the trained model of our framework.

Prerequisites

  • Linux
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Train/Test

CUDA_VISIBLE_DEVICES=0 python train.py --model retinexltifpm  --name retinexltifpm_allihd  --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx
  • Test the model
CUDA_VISIBLE_DEVICES=0 python test.py --model retinexltifpm  --name retinexltifpm_allihd  --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx

Apply a pre-trained model

  • Download the pretrained model from Google Drive or BaiduCloud (access code: 20m6), and put net_G.pth in the directory checkpoints/experiment. Run:
CUDA_VISIBLE_DEVICES=0 python test.py --model retinexltifpm  --name experiment  --dataset_root <dataset_dir> --dataset_name IHD --batch_size xx --init_port xxxx

Evaluation

We provide the code in ih_evaluation.py. Run:

CUDA_VISIBLE_DEVICES=0 python evaluation/ih_evaluation.py --dataroot <dataset_dir> --result_root  results/experiment/test_latest/images/ --evaluation_type our --dataset_name ALL

Quantitative Result

Dataset Metrics Composite Ours
(iHarmony4)
Ours
(iHarmony4+HVIDIT)
HCOCO PSNR
MSE
fMSE
33.99
69.37
996.59
37.61
23.25
386.39
37.77
21.84
367.38
HAdobe5k PSNR
MSE
fMSE
28.52
345.54
2051.61
36.20
42.21
296.76
36.49
39.53
266.49
HFlickr PSNR
MSE
fMSE
28.43
264.35
1574.37
31.74
100.86
676.71
32.08
96.87
635.60
Hday2night PSNR
MSE
fMSE
34.36
109.65
1409.98
36.48
50.64
755.88
36.60
50.37
763.33
HVIDIT PSNR
MSE
fMSE
38.72
53.12
1604.41
-
-
-
41.83
22.49
691.06
ALL PSNR
MSE
fMSE
32.07
167.39
1386.12
36.53
37.95
399.34
36.96
35.33
388.50

Bibtex

If you use this code for your research, please cite our papers.

@InProceedings{Guo_2021_CVPR,
    author    = {Guo, Zonghui and Zheng, Haiyong and Jiang, Yufeng and Gu, Zhaorui and Zheng, Bing},
    title     = {Intrinsic Image Harmonization},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {16367-16376}
}

Acknowledgement

For some of the data modules and model functions used in this source code, we need to acknowledge the repo of DoveNet and CycleGAN.

You might also like...
python library for invisible image watermark (blind image watermark)
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Comments
  • Model Inference

    Model Inference

    Hello, is there a way to infer the model by reading an image and passing the image and its mask to the model and getting the harmonized output? Without the need to store the image's path in a text file and reading it from the text file then loading the image?

    opened by AhmedHashish123 2
  • visdom interface is blank

    visdom interface is blank

    first,thanks for your excellent work! When I execute the training code, the visdom interface does not display the result picture and the training loss. it works when I execute the code of dovenet. could you tell me how to solve this problem? thanks again

    opened by Ligouhi 0
Releases(v1.0)
Owner
VISION @ OUC
Underwater Vision Lab
VISION @ OUC
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Generating Radiology Reports via Memory-driven Transformer

R2Gen This is the implementation of Generating Radiology Reports via Memory-driven Transformer at EMNLP-2020. Citations If you use or extend our work,

CUHK-SZ NLP Group 101 Dec 13, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
22 Oct 14, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022