Seq2seq - Sequence to Sequence Learning with Keras

Related tags

Deep Learningseq2seq
Overview

Seq2seq

Sequence to Sequence Learning with Keras

Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python deep learning library Keras. Using Seq2Seq, you can build and train sequence-to-sequence neural network models in Keras. Such models are useful for machine translation, chatbots (see [4]), parsers, or whatever that comes to your mind.

seq2seq

Getting started

Seq2Seq contains modular and reusable layers that you can use to build your own seq2seq models as well as built-in models that work out of the box. Seq2Seq models can be compiled as they are or added as layers to a bigger model. Every Seq2Seq model has 2 primary layers : the encoder and the decoder. Generally, the encoder encodes the input sequence to an internal representation called 'context vector' which is used by the decoder to generate the output sequence. The lengths of input and output sequences can be different, as there is no explicit one on one relation between the input and output sequences. In addition to the encoder and decoder layers, a Seq2Seq model may also contain layers such as the left-stack (Stacked LSTMs on the encoder side), the right-stack (Stacked LSTMs on the decoder side), resizers (for shape compatibility between the encoder and the decoder) and dropout layers to avoid overfitting. The source code is heavily documented, so lets go straight to the examples:

A simple Seq2Seq model:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8)
model.compile(loss='mse', optimizer='rmsprop')

That's it! You have successfully compiled a minimal Seq2Seq model! Next, let's build a 6 layer deep Seq2Seq model (3 layers for encoding, 3 layers for decoding).

Deep Seq2Seq models:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8, depth=3)
model.compile(loss='mse', optimizer='rmsprop')

Notice that we have specified the depth for both encoder and decoder as 3, and your model has a total depth of 3 + 3 = 6. You can also specify different depths for the encoder and the decoder. Example:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=20, depth=(4, 5))
model.compile(loss='mse', optimizer='rmsprop')

Notice that the depth is specified as tuple, (4, 5). Which means your encoder will be 4 layers deep whereas your decoder will be 5 layers deep. And your model will have a total depth of 4 + 5 = 9.

Advanced Seq2Seq models:

Until now, you have been using the SimpleSeq2Seq model, which is a very minimalistic model. In the actual Seq2Seq implementation described in [1], the hidden state of the encoder is transferred to decoder. Also, the output of decoder at each timestep becomes the input to the decoder at the next time step. To make things more complicated, the hidden state is propogated throughout the LSTM stack. But you have no reason to worry, as we have a built-in model that does all that out of the box. Example:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

Note that we had to specify the complete input shape, including the samples dimensions. This is because we need a static hidden state(similar to a stateful RNN) for transferring it across layers. (Update : Full input shape is not required in the latest version, since we switched to Recurrent Shop backend). By the way, Seq2Seq models also support the stateful argument, in case you need it.

You can also experiment with the hidden state propogation turned off. Simply set the arguments broadcast_state and inner_broadcast_state to False.

Peeky Seq2seq model:

Let's not stop there. Let's build a model similar to cho et al 2014, where the decoder gets a 'peek' at the context vector at every timestep.

cho et al 2014

To achieve this, simply add the argument peek=True:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4, peek=True)
model.compile(loss='mse', optimizer='rmsprop')

Seq2seq model with attention:

Attention Seq2seq

Let's not stop there either. In all the models described above, there is no allignment between the input sequence elements and the output sequence elements. But for machine translation, learning a soft allignment between the input and output sequences imporves performance.[3]. The Seq2seq framework includes a ready made attention model which does the same. Note that in the attention model, there is no hidden state propogation, and a bidirectional LSTM encoder is used by default. Example:

import seq2seq
from seq2seq.models import AttentionSeq2Seq

model = AttentionSeq2Seq(input_dim=5, input_length=7, hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

As you can see, in the attention model you need not specify the samples dimension as there are no static hidden states involved(But you have to if you are building a stateful Seq2seq model). Note: You can set the argument bidirectional=False if you wish not to use a bidirectional encoder.

Final Words

That's all for now. Hope you love this library. For any questions you might have, create an issue and I will get in touch. You can also contribute to this project by reporting bugs, adding new examples, datasets or models.

Installation:

sudo pip install git+https://github.com/farizrahman4u/seq2seq.git

Requirements:

Working Example:

Papers:

Owner
Fariz Rahman
Fariz Rahman
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Neurolab is a simple and powerful Neural Network Library for Python

Neurolab Neurolab is a simple and powerful Neural Network Library for Python. Contains based neural networks, train algorithms and flexible framework

152 Dec 06, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023