Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

Overview

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper]

This is Official PyTorch implementation for HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning.

@inproceedings{lee2021help,
    title     = {HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning},
    author    = {Lee, Hayeon and Lee, Sewoong and Chong, Song and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Hardware spec used for meta-training the proposed HELP model

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

Installation

$ conda create --name help python=3.8
$ conda activate help
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ pip install tqdm
$ conda install scipy
$ conda install pyyaml
$ conda install tensorboard

Contents

1. Experiments on NAS-Bench-201 Search Space

2. Experiments on FBNet Search Space

3. Experiments on OFA Search Space

4. Experiments on HAT Search Space

1. Reproduce Main Results on NAS-Bench-201 Search Space

We provide the code to reproduce the main results on NAS-Bench-201 search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 3).
  • Latency-constrained NAS Results with MetaD2A + HELP on unseen devices (Table 4).
  • Meta-Training HELP model.

1.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

1.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on NAS-Bench-201 search space (Table 3):

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path [Path of Checkpoint File] \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

You can use checkpoint file provided by this git repository ./data/nasbench201/checkpoint/help_max_corr.pt as follows:

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

or you can use provided script:

$ bash script/run_meta_test_nasbench201.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 3)

Method # of Training Samples
From Target Device
Desktop GPU
(Titan RTX Batch 256)
Desktop CPU
(Intel Gold 6226)
Mobile
Pixel2
Raspi4 ASIC FPGA Mean
FLOPS - 0.950 0.826 0.765 0.846 0.437 0.900 0.787
Layer-wise Predictor - 0.667 0.866 - - - - 0.767
BRP-NAS 900 0.814 0.796 0.666 0.847 0.811 0.801 0.789
BRP-NAS
(+extra samples)
3200 0.822 0.805 0.693 0.853 0.830 0.828 0.805
HELP (Ours) 10 0.987 0.989 0.802 0.890 0.940 0.985 0.932

1.3. [Meta-Test] Efficient Latency-constrained NAS combined with MetaD2A

You can reproduce latency-constrained NAS results with MetaD2A + HELP on unseen devices on NAS-Bench-201 search space (Table 4):

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path [Path of Checkpoint File] \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device [Device] \ 
                 --latency_constraint [Latency Constraint] 

For example, if you use checkpoint file provided by this git repository, then path of checkpoint file is ./data/nasbench201/checkpoint/help_max_corr.pt, if you set target device as CPU Intel Gold 6226 (gold_6226) with batch size 256 and target latency constraint as 11.0 (ms), command is as follows:

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device gold_6226 \ 
                 --latency_constraint 11.0 

or you can use provided script:

$ bash script/run_nas_metad2a.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 4)

Device # of Training Samples
from Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Neural Architecture
Config
GPU Titan RTX
(Batch 256)
titan_rtx_256
10 18.0
21.0
25.0
17.8
18.9
24.2
69.7
71.5
71.8
link
link
link
CPU Intel Gold 6226
gold_6226
10 8.0
11.0
14.0
8.0
10.7
14.3
67.3
70.2
72.1
link
link
link
Mobile Pixel2
pixel2
10 14.0
18.0
22.0
13.0
19.0
25.0
69.7
71.8
73.2
link
link
link
ASIC-Eyeriss
eyeriss
10 5.0
7.0
9.0
3.9
5.1
9.1
71.5
71.8
73.5
link
link
link
FPGA
fpga
10 4.0
5.0
6.0
3.8
4.7
7.4
70.2
71.8
73.5
link
link
link

1.4. Meta-Training HELP model

Note that this process is performed only once for all NAS results.

$ python main.py --search_space nasbench201 \
                 --mode 'meta-train' \
                 --num_samples 10 \
                 --num_meta_train_sample 900 \
                 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
                 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \           
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' \
                 --exp_name [EXP_NAME] \
                 --seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_nasbench201.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/nasbench201/[EXP_NAME]

2. Reproduce Main Results on FBNet Search Space

We provide the code to reproduce the main results on FBNet search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 2).
  • Meta-Training HELP model.

2.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

2.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on FBNet search space (Table 2):

$ python main.py --search_space fbnet \
	--mode 'meta-test' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--load_path './data/fbnet/checkpoint/help_max_corr.pt' \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss'

or you can use provided script:

$ bash script/run_meta_test_fbnet.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 2)

Method Raspi4 ASIC FPGA Mean
MAML 0.718 0.763 0.727 0.736
Meta-SGD 0.821 0.822 0.776 0.806
HELP (Ours) 0.887 0.943 0.892 0.910

2.3. Meta-Training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space fbnet \
	--mode 'meta-train' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--exp_name [EXP_NAME] \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss' \
	--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_fbnet.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/fbnet/[EXP_NAME]

3. Reproduce Main Results on OFA Search Space

We provide the code to reproduce the main results on OFA search space as follows:

  • Latency-constrained NAS Results with accuracy predictor of OFA + HELP on unseen devices (Table 5).
  • Validating obatined neural architecture on ImageNet-1K.
  • Meta-Training HELP model.

3.1. Data Preparation and Model Checkpoint

We include required datasets except ImageNet-1K, and checkpoints in this github repository. To validate obatined neural architecture on ImageNet-1K, you should download ImageNet-1K (2012 ver.)

3.2. [Meta-Test] Efficient Latency-constrained NAS combined with accuracy predictor of OFA

You can reproduce latency-constrained NAS results with OFA + HELP on unseen devices on OFA search space (Table 5):

python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device [DEVICE_NAME] \
	--latency_constraint [LATENCY_CONSTRAINT] \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

For example,

$ python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device titan_rtx_64 \
	--latency_constraint 20 \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

or you can use provided script:

$ bash script/run_nas_ofa.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 5)

Device Sample from
Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Architecture
config
GPU Titan RTX
(Batch 64)
10 20
23
28
20.3
23.1
28.6
76.0
76.8
77.9
link
link
link
CPU Intel Gold 6226 20 170
190
147
171
77.6
78.1
link
link
Jetson AGX Xavier 10 65
70
67.4
76.4
75.9
76.4
link
link

3.3. Validating obtained neural architecture on ImageNet-1K

$ python validate_imagenet.py \
		--config_path [Path of neural architecture config file]
		--imagenet_save_path [Path of ImageNet 1k]

for example,

$ python validate_imagenet.py \
		--config_path 'data/ofa/architecture_config/gpu_titan_rtx_64/latency_28.6ms_accuracy_77.9.json' \
		--imagenet_save_path './ILSVRC2012'

3.4. Meta-training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space ofa \
		--mode 'meta-train' \
		--num_samples 10 \
		--num_meta_train_sample 4000 \
		--exp_name [EXP_NAME] \
                --meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
                --meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
                --meta_test_devices 'titan_rtx_64' \
		--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_ofa.sh [GPU_NUM]

4. Main Results on HAT Search Space

We provide the neural architecture configurations to reproduce the results of machine translation (WMT'14 En-De Task) on HAT search space.

Efficient Latency-constrained NAS Results

Task Device Samples from
Target Device
Latency BLEU score Architecture
Config
WMT'14 En-De GPU NVIDIA Titan RTX 10 74.0ms
106.5ms
27.19
27.44
link
link
WMT'14 En-De CPU Intel Xeon Gold 6240 10 159.6ms
343.2ms
27.20
27.52
link
link

You can test models by BLEU score and Computing Latency.

Reference

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (ICML17)

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning

Once-for-All: Train One Network and Specialize it for Efficient Deployment (ICLR20)

NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search (ICLR20)

BRP-NAS: Prediction-based NAS using GCNs (NeurIPS20)

HAT: Hardware Aware Transformers for Efficient Natural Language Processing (ACL20)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR21)

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark (ICLR21)

Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
Source Code for Simulations in the Publication "Can the brain use waves to solve planning problems?"

Code for Simulations in the Publication Can the brain use waves to solve planning problems? Installing Required Python Packages Please use Python vers

EMD Group 2 Jul 01, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023