The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

Overview

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction

The implementation of the accepted paper "Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN utilizes a User-Behavior Voucher Graph (UVG) to extract complex user-voucher-item relationship and the attention mechanism to capture users' long-term voucher redemption preference. Experiments shows that DMBGN achieves 10%-16% relative AUC improvement over Deep Neural Networks (DNN), and 2% to 4% AUC improvement over Deep Interest Network (DIN).

Benchmark Dataset

A randomly desensitized sampled dataset from one of the large-scaled production dataset from from Lazada (Alibaba Group) is included. The dataset contains three dataframes corresponding users' voucher collection logs, related user behavior logs and related item features, a detailed description can be found in ./data/README.md file.

We hope this dataset could help to facilitate research in the voucher redemption rate prediction field.

DMBGN Performance

Compared Models:

  • LR: Logistic Regression [1], a shallow model.
  • GBDT: Gradient Boosting Decision Tree [2], a tree-based non deep-learning model.
  • DNN: Deep Neural Networks.
  • WDL: Wide and Deep model [3], a widely accepted model in real industrial applications with an additional linear model besides the deep model compared to DNN.
  • DIN: Deep Interest Network [4], an attention-based model in recommendation systems that has been proven successful in Alibaba.

The experimental results on the public sample dataset are as follows:

Model AUC RelaImpr(DNN) RelaImpr(DIN) Logloss
LR 0.7377 -9.22% -14.28% 0.3897
xgBoost 0.7759 5.40% -0.48% 0.3640
DNN 0.7618 0.00% -5.57% 0.3775
WDL 0.7716 3.73% -2.05% 0.3717
DIN 0.7773 5.90% 0.00% 0.3688
DMBGN_AvgPooling 0.7789 6.54% 0.61% 0.3684
DMBGN_Pretrained 0.7804 7.11% 1.14% 0.3680
DMBGN 0.7885 10.20% 4.06% 0.3616

Note that this dataset is a random sample from dataset Region-C and the performance is different as in the submitted paper due to the smaller sample size (especially xgBoost). However, the conclusion from the experiment results is consistent with the submitted paper, where DMBGN achieves 10.20% relative AUC improvement over DNN and 4.6% uplift over DIN.

image info

How To Use

All experiment codes are organized into the DMBGN_SIGKDD21-release.ipynb jupyter notebook including corresponding running logs, detail code implementation of each model (LR, GBDT, DNN, WDL, DIN, DMBGN) can be found in ./models folder.

To run the experiments, simply start a jupyter notebook and run all code cells in the DMBGN_SIGKDD21-release.ipynb file and check the output logs. Alternatively, you can refer to the existing log outputs in the notebook file. (If you encounter "Sorry, something went wrong. Roload?" error message, just click Reload and the notebook will show.)

To use the DMBGN model, please refer to the code implementation in ./models/DMBGN.py.

Minimum Requirement

python: 3.7.1
numpy: 1.19.5
pandas 1.2.1
pandasql 0.7.3
torch: 1.7.1
torch_geometric: 1.6.3
torch: 1.7.1
torch-cluster: 1.5.8
torch-geometric: 1.6.3
torch-scatter: 2.0.5
torch-sparse: 0.6.8
torch-spline-conv: 1.2.0
torchaudio: 0.7.2
torchvision: 0.8.2
deepctr-torch: 0.2.3
pickle: 4.0

What To Do

  • We are currently deploying DMBGN model online for Lazada voucher related business, the online A/B testing performance will be reported soon.
  • More detailed code comments are being added.

Acknowledgment

Our code implementation is developed based on the Deep Interest Network (DIN) codes from the DeepCTR package, with modification to fit DMBGN model architecture and multi-GPU usage.

We thanks the anonymous reviewers for their time and feedback.

Reference

  • [1] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al.2013. Ad click prediction: a view from the trenches. InProceedings of the 19thACM SIGKDD international conference on Knowledge discovery and data mining.1222–1230.
  • [2] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boostingdecision tree.Advances in neural information processing systems30 (2017), 3146–3154.
  • [3] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, RohanAnil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.2016. Wide & Deep Learning for Recommender Systems.CoRRabs/1606.07792(2016). arXiv:1606.07792 http://arxiv.org/abs/1606.07792 .
  • [4] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, YanghuiYan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-throughrate prediction. InProceedings of the 24th ACM SIGKDD International Conferenceon Knowledge Discovery & Data Mining. 1059–1068.
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
Use Jupyter Notebooks to demonstrate how to build a Recommender with Apache Spark & Elasticsearch

Recommendation engines are one of the most well known, widely used and highest value use cases for applying machine learning. Despite this, while there are many resources available for the basics of

International Business Machines 793 Dec 18, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022