Sound Event Detection with FilterAugment

Overview

Sound Event Detection with FilterAugment

Official implementation of

  • Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Challenge Task 4 technical report)
    by Hyeonuk Nam, Byeong-Yun Ko, Gyeong-Tae Lee, Seong-Hu Kim, Won-Ho Jung, Sang-Min Choi, Yong-Hwa Park
    DCASE arXiv
    - arXiv version has updates on some minor errors

  • FilterAugment: An Acoustic Environmental Data Augmentation Method (Submitted to ICASSP 2022)
    by Hyeonuk Nam, Seong-Hu Kim, Yong-Hwa Park
    arXiv

    • Implementation for 2nd paper that includes updated version of FilterAugment is incomplete for now. It will be updated soon!

Ranked on [3rd place] in IEEE DCASE 2021 Task 4.

FilterAugment

Filter Augment is an audio data augmentation method newly proposed on the above papers for training acoustic models in audio/speech tasks. It applies random weights on randomly selected frequency bands. For more details, refer to the papers mentioned above.

  • This example shows two types of FilterAugment applied on log mel spectrogram of a 10-second audio clip. (a) shows original log mel spectrogram, (b) shows log mel spectrogram applied by step type FilterAugment (c) shows log mel spectrogram applied by linear type Filter Augment.
  • Applied filters are shown below. Filter (d) is applied on (a) to result in (b), and filter (e) is applied on (a) to result in (c)











  • Step type FilterAugment shows several frequency bands that are uniformly increased or decreased in amplitude, while linear type FilterAugment shows continous filter that shows certain peaks and dips.
  • On our participation on DCASE2021 challenge task 4, we used prototype FilterAugment which is step type FilterAugment without hyperparameter minimum bandwith. The code for this prototype is defiend as "filt_aug_dcase" at utils/data_aug.py @ line 107
  • Code for updated FilterAugment including step and linear type for ICASSP submission is defiend as "filt_aug_icassp" at utils/data_aug.py @ line 126

Requirements

Python version of 3.7.10 is used with following libraries

  • pytorch==1.8.0
  • pytorch-lightning==1.2.4
  • pytorchaudio==0.8.0
  • scipy==1.4.1
  • pandas==1.1.3
  • numpy==1.19.2

other requrements in requirements.txt

Datasets

You can download datasets by reffering to DCASE 2021 Task 4 description page or DCASE 2021 Task 4 baseline. Then, set the dataset directories in config yaml files accordingly. You need DESED real datasets (weak/unlabeled in domain/validation/public eval) and DESED synthetic datasets (train/validation).

Training

You can train and save model in exps folder by running:

python main.py

model settings:

There are 5 configuration files in this repo. Default setting is (ICASSP setting)(./configs/config_icassp.yaml), the optimal linear type FilterAugment described in paper submitted to ICASSP. There are 4 other model settings in DCASE tech report. To train for model 1, 2, 3 or 4 from the DCASE tech report or ICASSP setting, you can run the following code instead.

# for example, to train model 3:
python main.py --confing model3

Results of DCASE settings (model 1~4) on DESED Real Validation dataset:

Model PSDS-scenario1 PSDS-scenario2 Collar-based F1
1 0.408 0.628 49.0%
2 0.414 0.608 49.2%
3 0.381 0.660 31.8%
4 0.052 0.783 19.8%
  • these results are based on train models with single run for each setting

Results of ICASSP settings on DESED Real Validation dataset:

Methods PSDS-scenario1 PSDS-scenario2 Collar-based F1 Intersection-based F1
w/o FiltAug 0.387 0.598 47.7% 70.8%
step FiltAug 0.412 0.634 47.4% 71.2%
linear FiltAug 0.413 0.636 49.0% 73.5%
  • These results are based on max values of each metric for 3 separate runs on each setting (refer to paper for details).

Reference

DCASE 2021 Task 4 baseline

Citation & Contact

If this repository helped your works, please cite papers below!

@techreport{Nam2021,
    Author = "Nam, Hyeonuk and Ko, Byeong-Yun and Lee, Gyeong-Tae and Kim, Seong-Hu and Jung, Won-Ho and Choi, Sang-Min and Park, Yong-Hwa",
    title = "Heavily Augmented Sound Event Detection utilizing Weak Predictions",
    institution = "DCASE2021 Challenge",
    year = "2021",
    month = "June",
}

@article{nam2021filteraugment,
  title={FilterAugment: An Acoustic Environmental Data Augmentation Method},
  author={Hyeonuk Nam and Seoung-Hu Kim and Yong-Hwa Park},
  journal={arXiv preprint arXiv:2107.13260},
  year={2021}
}

Please contact Hyeonuk Nam at [email protected] for any query.

A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
SigOpt wrappers for scikit-learn methods

SigOpt + scikit-learn Interfacing This package implements useful interfaces and wrappers for using SigOpt and scikit-learn together Getting Started In

SigOpt 73 Sep 30, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022