Lite-HRNet: A Lightweight High-Resolution Network

Overview

LiteHRNet Benchmark

πŸ”₯ πŸ”₯ Based on MMsegmentation πŸ”₯ πŸ”₯

Cityscapes

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.81 80.6 10 71.81 80.6 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_320k_cityscapes 71.96 80.43 10 71.96 80.43 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_640k_cityscapes 69.29 78.91 8 69.29 78.91 8 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_160k_cityscapes 68.99 77.63 10 68.99 77.63 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.42 78.72 10 70.42 78.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_640k_cityscapes 67.12 75.84 7 67.12 75.84 7 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_160k_cityscapes 73.81 82.42 10 73.81 82.42 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.46 82.41 10 74.46 82.41 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.15 79.65 6 69.15 79.65 6 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.11 80.72 10 72.11 80.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.12 80.15 10 72.12 80.15 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_640k_cityscapes 67.31 77.76 5 67.31 77.76 5 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.49 79.95 10 71.49 79.95 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_320k_cityscapes 73.03 81.35 10 73.03 81.35 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_640k_cityscapes 68.06 76.67 8 68.26 77.17 7 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_160k_cityscapes 69.43 78.15 10 69.43 78.15 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.61 78.87 10 70.61 78.87 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_640k_cityscapes 63.83 73.11 4 63.83 73.11 4 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_160k_cityscapes 72.65 81.36 10 72.65 81.36 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.98 83.22 10 74.98 83.22 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.11 78.88 6 69.11 78.88 6 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.78 81.37 10 72.78 81.37 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.37 80.29 10 72.37 80.29 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_640k_cityscapes 63.53 74.6 4 65.91 75.91 3 log | 20210816_121228.log.json

ADE20k

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 16.15 22.12 2 16.15 22.12 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 24.2 31.67 10 24.2 31.67 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 26.17 34.86 10 26.17 34.86 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 16.89 22.96 2 16.89 22.96 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 24.71 32.46 10 24.71 32.46 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 16.77 22.89 2 16.77 22.89 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 26.81 34.96 10 26.81 34.96 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 16.37 22.7 2 16.37 22.7 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 24.38 32.52 10 24.38 32.52 10 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x512_160k_ade20k 0 0 0 0 0 0 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 23.82 31.51 10 23.82 31.51 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 24.14 31.81 10 24.14 31.81 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 12.23 17.0 2 12.23 17.0 2 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 20.82 27.58 10 20.82 27.58 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 21.98 29.06 10 21.98 29.06 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 14.11 19.06 3 14.11 19.06 3 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 24.06 31.78 10 24.06 31.78 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 14.37 19.21 3 14.37 19.21 3 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 25.22 32.67 10 25.22 32.67 10 log | 20210816_121228.log.json
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

ClΓ©ment Pinard 361 Dec 12, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit πŸš€ πŸš€ πŸš€ Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
LBK 26 Dec 28, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper β€œDynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
πŸ”Š Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. πŸ’œ

Hacktober Fest 2021 πŸŽ‰ Open source is changing the world – one contribution at a time! πŸŽ‰ This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022