Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Overview

Neuron Merging: Compensating for Pruned Neurons

Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference on Neural Information Processing Systems (NeurIPS 2020).

Requirements

To install requirements:

conda env create -f ./environment.yml

Python environment & main libraries:

  • python 3.8
  • pytorch 1.5.0
  • scikit-learn 0.22.1
  • torchvision 0.6.0

LeNet-300-100

To test LeNet-300-100 model on FashionMNIST, run:

bash scripts/LeNet_300_100_FashionMNIST.sh -t [model type] -c [criterion] -r [pruning ratio]

You can use three arguments for this script:

  • model type: original | prune | merge
  • pruning criterion : l1-norm | l2-norm | l2-GM
  • pruning ratio : 0.0 ~ 1.0

For example, to test the model after pruning 50% of the neurons with $l_1$-norm criterion, run:

bash scripts/LeNet_300_100_FashionMNIST.sh -t prune -c l1-norm -r 0.5

To test the model after merging , run:

bash scripts/LeNet_300_100_FashionMNIST.sh -t merge -c l1-norm -r 0.5

VGG-16

To test VGG-16 model on CIFAR-10, run:

bash scripts/VGG16_CIFAR10.sh -t [model type] -c [criterion]

You can use two arguments for this script

  • model type: original | prune | merge
  • pruning criterion: l1-norm | l2-norm | l2-GM

As a pretrained model on CIFAR-100 is not included, you must train it first. To train VGG-16 on CIFAR-100, run:

bash scripts/VGG16_CIFAR100_train.sh

All the hyperparameters are as described in the supplementary material.

After training, to test VGG-16 model on CIFAR-100, run:

bash scripts/VGG16_CIFAR100.sh -t [model type] -c [criterion]

You can use two arguments for this script

  • model type: original | prune | merge
  • pruning criterion: l1-norm | l2-norm | l2-GM

ResNet

To test ResNet-56 model on CIFAR-10, run:

bash scripts/ResNet56_CIFAR10.sh -t [model type] -c [criterion] -r [pruning ratio]

You can use three arguments for this script

  • model type: original | prune | merge
  • pruning method : l1-norm | l2-norm | l2-GM
  • pruning ratio : 0.0 ~ 1.0

To test WideResNet-40-4 model on CIFAR-10, run:

bash scripts/WideResNet_40_4_CIFAR10.sh -t [model type] -c [criterion] -r [pruning ratio]

You can use three arguments for this script

  • model type: original | prune | merge
  • pruning method : l1-norm | l2-norm | l2-GM
  • pruning ratio : 0.0 ~ 1.0

Results

Our model achieves the following performance on (without fine-tuning) :

Image classification of LeNet-300-100 on FashionMNIST

Baseline Accuracy : 89.80%

Pruning Ratio Prune ($l_1$-norm) Merge
50% 88.40% 88.69%
60% 85.17% 86.92%
70% 71.26% 82.75%
80% 66.76 80.02%

Image classification of VGG-16 on CIFAR-10

Baseline Accuracy : 93.70%

Criterion Prune Merge
$l_1$-norm 88.70% 93.16%
$l_2$-norm 89.14% 93.16%
$l_2$-GM 87.85% 93.10%

Citation

@inproceedings{kim2020merging,
  title     = {Neuron Merging: Compensating for Pruned Neurons},
  author    = {Kim, Woojeong and Kim, Suhyun and Park, Mincheol and Jeon, Geonseok},
  booktitle = {Advances in Neural Information Processing Systems 33},
  year      = {2020}
}
Owner
Woojeong Kim
Woojeong Kim
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Integrated physics-based and ligand-based modeling.

ComBind ComBind integrates data-driven modeling and physics-based docking for improved binding pose prediction and binding affinity prediction. Given

Dror Lab 44 Oct 26, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation

SegTransVAE: Hybrid CNN - Transformer with Regularization for medical image segmentation This repo is the official implementation for SegTransVAE. Seg

Nguyen Truong Hai 4 Aug 04, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022