The mini-MusicNet dataset

Overview

mini-MusicNet

A music-domain dataset for multi-label classification

Music transcription is sequence-to-sequence prediction problem: given an audio performance, we must predict a corresponding sequence of notes. If we ignore correlations in the sequence of notes, music transcription simplifies to a multi-label classification problem. Given an audio performance, we are tasked with predicting the set of notes present in an audio performance at a given time. The mini-MusicNet dataset is derived from the MusicNet dataset, providing a scaled-down, pre-processed subset of MusicNet suitable for multi-label classification.

This repository provides information for downloading and interacting with mini-MusicNet, as well as some algorithmic baselines for multi-label classification with mini-MusicNet.

About mini-MusicNet

Download. The mini-MusicNet dataset can be downloaded here. To follow the tutorial in the next section or run explore.ipynb, please download mini-MusicNet to the minimusic sub-directory of the root of this repository.

This dataset consists of n = 82,500 data points with d = 4,096 features and k = 128 binary labels per datapoint. Each data point is an approximately 9ms audio clip: these clips are sampled at regular intervals from the underlying MusicNet dataset. Each clip is normalized to amplitudes in [-1,1]. The label on a datapoint is a binary k-dimensional (multi-hot) vector that indicates the notes being performed at the center of the audio clip. We define train, validation, and test splits with n = 62,500, 10,000, and 10,000 data points respectively. The mini-MusicNet dataset can be acquired here. Alternatively, you can use construct.py to reconstruct mini-MusicNet from a copy of MusicNet.

Exploring mini-MusicNet

To get started, let's load and visualize the training data. The contents of this section are summarized in the explore.ipynb notebook.

import numpy as np
import matplotlib.pyplot as plt

Xtrain = np.load('minimusic/audio-train.npy')
Ytrain = np.load('minimusic/labels-train.npy')

fig, ax = plt.subplots(1, 2, figsize=(10,2))
ax[0].set_title('Raw acoustic features')
ax[0].plot(Xtrain[0])
ax[1].set_title('Fourier transform of the raw features')
ax[1].plot(np.abs(np.fft.rfft(Xtrain[0])[0:256])) # clip to 256 features for easier visualization

Now let's see how linear (ridge) regression performs on the raw audio features. We'll measure results using average precision.

from sklearn.metrics import average_precision_score

Xtest = np.load('minimusic/audio-test.npy')
Ytest = np.load('minimusic/labels-test.npy')

R = .001
beta = np.dot(np.linalg.inv(np.dot(Xtrain.T,Xtrain) + R*np.eye(Xtrain.shape[1])),np.dot(Xtrain.T,Ytrain))

print('Train AP:', round(average_precision_score(Ytrain, np.dot(Xtrain, beta), average='micro'), 2))
print('Test AP:', round(average_precision_score(Ytest, np.dot(Xtest, beta), average='micro'), 2))

Train AP: 0.19 Test AP: 0.04

That's not so great. We can do much better by transforming our audio wave to the Fourier domain.

Xtrainfft = np.abs(np.fft.rfft(Xtrain))
Xtestfft = np.abs(np.fft.rfft(Xtest))

R = .001
beta = np.dot(np.linalg.inv(np.dot(Xtrainfft.T,Xtrainfft) + R*np.eye(Xtrainfft.shape[1])),np.dot(Xtrainfft.T,Ytrain))

print('Train AP:', round(average_precision_score(Ytrain, np.dot(Xtrainfft, beta), average='micro'), 2))
print('Test AP:', round(average_precision_score(Ytest, np.dot(Xtestfft, beta), average='micro'), 2))

Train AP: 0.57 Test AP: 0.47

Finally, it can often be more revealing to look at a precision-recall curve, rather than the scalar average precision (the area under the P/R curve). Let's see what our full P/R curve looks like for ridge regression on Fourier features.

fig, ax = plt.subplots(1, 2, figsize=(10,4))
ax[0].set_title('Train P/R Curve')
plot_pr_curve(ax[0], Ytrain, np.dot(Xtrainfft, beta))
ax[1].set_title('Test P/R Curve')
plot_pr_curve(ax[1], Ytest, np.dot(Xtestfft, beta))

And that's enough to get us started! We hope that mini-MusicNet can be a useful resource for empirical work in multi-label classification.

References

For further information about MusicNet, or if you want to cite this work, please see:

@inproceedings{thickstun2017learning,
  author    = {John Thickstun and Zaid Harchaoui and Sham M. Kakade},
  title     = {Learning Features of Music from Scratch},
  booktitle = {International Conference on Learning Representations},
  year      = {2017},
}
Owner
John Thickstun
John Thickstun
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).

HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA

Google Research 78 Oct 31, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022