Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Overview

Blockchain-enabled Server-less Federated Learning

Repository containing the files used to reproduce the results of the publication "Blockchain-enabled Server-less Federated Learning".

''BibTeX'' citation:

@article{wilhelmi2021blockchain,
  title={Blockchain-enabled Server-less Federated Learning},
  author={Wilhelmi, Francesc, Giupponi, Lorenza and Dini, Paolo},
  journal={arXiv preprint arXiv:2112.07938
},
  year={2021}
}

Table of Contents

Authors

Abstract

Motivated by the heterogeneous nature of devices participating in large-scale Federated Learning (FL) optimization, we focus on an asynchronous server-less FL solution empowered by Blockchain (BC) technology. In contrast to mostly adopted FL approaches, which assume synchronous operation, we advocate an asynchronous method whereby model aggregation is done as clients submit their local updates. The asynchronous setting fits well with the federated optimization idea in practical large-scale settings with heterogeneous clients. Thus, it potentially leads to higher efficiency in terms of communication overhead and idle periods. To evaluate the learning completion delay of BC-enabled FL, we provide an analytical model based on batch service queue theory. Furthermore, we provide simulation results to assess the performance of both synchronous and asynchronous mechanisms. Important aspects involved in the BC-enabled FL optimization, such as the network size, link capacity, or user requirements, are put together and analyzed. As our results show, the synchronous setting leads to higher prediction accuracy than the asynchronous case. Nevertheless, asynchronous federated optimization provides much lower latency in many cases, thus becoming an appealing FL solution when dealing with large data sets, tough timing constraints (e.g., near-real-time applications), or highly varying training data.

Repository description

This repository contains the resources used to generate the results included in the paper entitled "Blockchain-enabled Server-less Federated Learning". The files included in this repository are:

  1. LaTeX files: contains the files used to generate the manuscript.
  2. Code & Results: scripts and code used to generate the results included in the paper.
  • Queue code: scripts used to execute the Blockchain queuing delay simulations through the batch-service queue simulator.
  • TensorFlow code: python scripts used to execute the FL mechanisms through TensorFlowFederated.
  • Matlab code: matlab scripts used to process the results and plot the figures included in the manuscript.
  • Outputs: files containing the outputs from the different resources (queue simulator, TFF).
  • Figures: figures included in the manuscript and others with preliminary results.

Usage

Part 1: Batch service queue analysis

To generate the results related to the analysis of the queueing delay in the Blockchain, we used our batch-service queue simulator (commit: f846b66). Please, refer to that repository's documentation for installation/execution guidelines. As for the corresponding theoretical background, more details can be found in [1].

The obtained results from this part can be found at "Matlab code/output_queue_simulator". To reproduce them, execute the scripts from the "Batch service queue" folder in the batch-service queue simulator.

Part 2: FLchain analysis

Tensorflow Federated (TFF) has been used to evaluate the proposed s-FLchain and a-FLchain mechanisms in the manuscript. To get started with TF (and TFF), we strongly recommend using the tutorials in https://www.tensorflow.org/federated/tutorials/tutorials_overview.

Once the TFF environment has been setup, our results can be reproduced by using the scripts in "TensorFlow code":

  1. centalized_baseline.py: centralized ML model for getting baseline results (upper/lower bounds).
  2. sFLchain_vs_aFLchain.py: script generating the output for the comparison of the synchronous and the asynchronous models.

The output results from this part can be found at "Matlab code/output_tensorflow".

Part 3: End-to-end analysis framework

Finally, to gather all the resources together, we have used the end-to-end latency framework contained in this repository ("Matlab code/simulation_scripts"). Those files contain the communication and computation models used to calculate the total latency experienced by each considered Blockchain-enabled FL mechanism. Moreover, to get the end-to-end latency and accuracy results, the abovementioned scripts gather and process the outputs obtained from both batch-service queue simulator and TFF.

Content:

  1. 0_preliminary_results: evaluation of several FL parameters via TFF (out of the scope of this publication).
  2. 1_blockchain_analysis: evaluation of the Blockchain queuing delay (refer to Part 1: Batch service queue analysis).
  3. 2_flchain: evaluation of the FL accuracy (refer to Part 2: FLchain analysis) and end-to-end latency analysis. Includes models to compute communication and computation-related delays.

Performance Evaluation

Simulation parameters

The simulation parameters used in the publication are as follows:

Parameter Value
Number of miners 19
Transaction size 5 kbits
BC Block header size 20 kbits
Max. waiting time 1000 seconds
Queue length 1000 packets
--------- --------------------------------------- ----------------------
Min/max distance Client-BS 0/4.15 meters
Bandwidth. 180 kHz
Min/max distance Client-BS 2 GHz
Min/max distance Client-BS 0 dBi
Comm. Loss at the reference distance (P_L0) 5 dB
Path-loss exponent (α) 4.4
Shadowing factor (σ) 9.5
Obstacles factor (γ) 30
Ground noise -95 dBm
Capacity P2P links 5 Mbps
--------- --------------------------------------- ----------------------
Learning algorithm Neural Network
Number of hidden layers 2
Activation function ReLU
Optimizer SGD
Loss function Cat. cross-entropy
ML Learning rate (local/global) 0.01/1
Epochs number 5
Batch size 20
CPU cycles to process a data point 10^-5
Clients' clock speed 1 GHz

Simulation Results

In what follows, we present the results presented in the manuscript. First, we refer to the Blockchain queuing delay analysis, where we assess the sensitivity of the Blockchain on various parameters, including the block size, the mining rate, the traffic intensity, or the miners' communication capacity.

Next, we provide a broader vision of the Blockchain transaction confirmation latency by including other delays different than the queuing delay, such as transaction upload, block generation, or block propagation.

Finally, we present the results obtained for the evaluation of s-FLchain and a-FLchain in terms of learning accuracy and learning completion time:

References

[1] Wilhelmi, F., & Giupponi, L. (2021). Discrete-Time Analysis of Wireless Blockchain Networks. arXiv preprint arXiv:2104.05586.

Contribute

If you want to contribute, please contact to [email protected].

Owner
Francesc Wilhelmi
PhD Student at the Wireless Networking Research Group (Universitat Pompeu Fabra)
Francesc Wilhelmi
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022