Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Overview

Kaggle-titanic

This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this repository is to provide an example of a competitive analysis for those interested in getting into the field of data analytics or using python for Kaggle's Data Science competitions .

Quick Start: View a static version of the notebook in the comfort of your own web browser.

Installation:

To run this notebook interactively:

  1. Download this repository in a zip file by clicking on this link or execute this from the terminal: git clone https://github.com/agconti/kaggle-titanic.git
  2. Install virtualenv.
  3. Navigate to the directory where you unzipped or cloned the repo and create a virtual environment with virtualenv env.
  4. Activate the environment with source env/bin/activate
  5. Install the required dependencies with pip install -r requirements.txt.
  6. Execute ipython notebook from the command line or terminal.
  7. Click on Titanic.ipynb on the IPython Notebook dasboard and enjoy!
  8. When you're done deactivate the virtual environment with deactivate.

Dependencies:

Kaggle Competition | Titanic Machine Learning from Disaster

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.

One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.

In this contest, we ask you to complete the analysis of what sorts of people were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy.

This Kaggle Getting Started Competition provides an ideal starting place for people who may not have a lot of experience in data science and machine learning."

From the competition homepage.

Goal for this Notebook:

Show a simple example of an analysis of the Titanic disaster in Python using a full complement of PyData utilities. This is aimed for those looking to get into the field or those who are already in the field and looking to see an example of an analysis done with Python.

This Notebook will show basic examples of:

Data Handling

  • Importing Data with Pandas
  • Cleaning Data
  • Exploring Data through Visualizations with Matplotlib

Data Analysis

  • Supervised Machine learning Techniques: + Logit Regression Model + Plotting results + Support Vector Machine (SVM) using 3 kernels + Basic Random Forest + Plotting results

Valuation of the Analysis

  • K-folds cross validation to valuate results locally
  • Output the results from the IPython Notebook to Kaggle

Benchmark Scripts

To find the basic scripts for the competition benchmarks look in the "Python Examples" folder. These scripts are based on the originals provided by Astro Dave but have been reworked so that they are easier to understand for new comers.

Competition Website: http://www.kaggle.com/c/titanic-gettingStarted

Comments
  • output file

    output file "data/output/logitregres.csv" contains the survived values other than {0,1}

    Thanks for the great article and code. I see that direct submission of output file to kaggle results in error and it says Survived column values must be either 0 or 1.

    Am I missing something? Should I have a cutoff and turn them in to 0 or 1?

    opened by srini09 2
  • Fixed issue with bar chart

    Fixed issue with bar chart

    If auto-sorting is on (as per default), the returned series object is sorted by values, i.e. for „male“ the not-survived category is reported first and for „female“ the survived. When summing over male and female, the categories get mixed up.

    opened by metatier 2
  • Adds the updated csv files with capitalied column names. Fixed the iPyth...

    Adds the updated csv files with capitalied column names. Fixed the iPyth...

    ...on Notebook so it works with capitalized column headers. Updated the data folder with the two new csv files (train and test) as well as output/logitregres.csv.

    opened by thearpitgupta 2
  • Column headers are now capitalized

    Column headers are now capitalized

    Looks like column headers in the training data set are now capitalized. See here http://www.kaggle.com/c/titanic-gettingStarted/download/train.csv It's not capitalized in the data set used used in the repo https://github.com/agconti/kaggle-titanic/blob/master/data/train.csv Wonder if Kaggle changed the data set and intentionally made this change. Anyways, if you want I am happy to submit a PR that works with capitalized column names. Let me know. Thanks.

    PS - Great work.

    opened by thearpitgupta 2
  • sharey for subplots

    sharey for subplots

    Not sure if you're original intention was to show the Y axis for all your subplots in input 14 but if it wasn't you can pass in sharey=True into df.plot() function to eliminate the redundant axes.

    example

    Awesome work on the notebook btw!

    opened by zunayed 2
  • Install KaggleAux through pip

    Install KaggleAux through pip

    Currently, a subsection of KaggleAux is included in this repository as a temporary connivence. It would be cleaner to have KaggleAux as a 3rd party dependency installed through pip. This would be less confusing to users, and would allow updates in KaggleAux to be better incorporated.

    enhancement 
    opened by agconti 1
  • Categorization of algorithms

    Categorization of algorithms

    The README and several places in notebook categorize SVM and Random Forest into "Unsupervised Learning". They actually belong to "Supervised Learning".

    e.g. http://cs229.stanford.edu/notes/cs229-notes3.pdf

    opened by hupili 1
  • Suggestion -- update requirements.txt

    Suggestion -- update requirements.txt

    Hi, I don't know if this repo is still maintained, but would be nice to update the requirements.txt with supported versions.

    :+1: Thanks for putting this repo together.

    opened by DaveOkpare 0
  • Update agc_simp_gendermodel.py

    Update agc_simp_gendermodel.py

    data indexing was inappropriate for the operation taking care Lines #18,#19 index 3 , we have Name of passenger but not gender , so all the time we'll get false
    Lines #26,#27,#28 , proportions should be calculated on Survived column , not on PassengerId

    opened by praveenbommali 0
  • why use barh and ylim

    why use barh and ylim

    I don't understand the need of using barh and ylim functions in plotting.Simple vertical graphs are easier to understand then what is the purpose of using barh.And Thank you for sharing this notebook it's really informative.

    opened by barotdhrumil21 0
Releases(v0.2.0)
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR 2022)

Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds (CVPR2022)[paper] Authors: Chenhang He, Ruihuang Li, Shuai Li, L

Billy HE 141 Dec 30, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022