TPlinker for NER 中文/英文命名实体识别

Overview

TPLinker-NER

喜欢本项目的话,欢迎点击右上角的star,感谢每一个点赞的你。

项目介绍

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

【注意】 事实上,本项目使用的base模型是TPLinker_plus,这是因为若严格地按照TPLinker的设计思想,在NER任务上几乎无法使用。具体原因,在Q&A部分有介绍。

TPLinker-NER相比于之前的序列标注、半指针-半标注等NER模型,更加有效的解决了实体嵌套问题。因为TPLinker本身在RE领域已经取得了优异的成绩,而TPLinker-NER作为从中提取的子功能,理论上效果也会太差。 由于本人拥有的算力有限,无法在大规模语料库上进行试验,此次只在 CLUENER 数据集上做了实验。

CLUENER验证集F1

Best F1 on dev: 0.9111

Usage

实验环境

本次实验进行时Python版本为3.6,其他主要的第三方库包括:

  • pytorch==1.8.1
  • wandb==0.10.26 #for logging the result
  • glove-python-binary==0.1.0
  • transformers==4.1.1
  • tqdm==4.54.1

NOTE:

  1. wandb 是一款优秀的机器学习可视化库。本项目默认未启用wandb,如果想使用wandb管理日志,请在tplinker_plus_ner/config.py文件中修改相关配置即可。
  2. 如果你使用的Windows系统且尚未安装Glove库,或者只想用BERT作编码器,主文件请使用train_only_bert.py

数据准备

格式要求

TPLinker-NER约定数据集的的格式如下:

  • 训练集train_data.json与验证集valid_data.json
[
    {
        "id":"",
        "text":"原始语句",
        "entity_list":[{"text":"实体","type":"实体类型","char_span":"实体char级别的span","token_span":"实体token级别的span"}]
    },
    ...
]
  • 测试集test_data.json
[
    {
        "id":"",
        "text":"原始语句"
    },
    ...
]

数据转换

如果需要将其他格式的数据集转换到TPLinker-NER,请参考raw_data/convert_dataset.py的转换逻辑。

数据存放

准备好的数据需放在data4bert/{exp_name}data4bilstm/{exp_name}中,其中exp_nametplinker_plus_ner/config.py中配置的实验名。

预训练模型与词向量

请下载Bert的中文预训练模型bert-base-chinese存放至pretrained_models/,并在tplinker_plus_ner/config.py中配置正确的bert_path

如果你想使用BiLSTM,需要准备预训练word embeddings存放至pretrained_emb/,如何预训练请参考preprocess/Pretrain_Word_Embedding.ipynb

Train

请阅读tplinker_plus_ner/config.py中的内容,并根据自己的需求修改配置与超参数。

然后开始训练

cd tplinker_plus_ner
python train.py

Evaluation

你仍然需要在tplinker_plus_ner/config.py中配置Evaluation相关参数。尤其注意eval_config中的model_state_dict_dir参数值与你所用的日志模块一致。

然后开始Evaluate

cd tplinker_plus_ner
python evaluate.py

Q&A

以下问题为个人在改写项目的想法,仅供参考,如有错误,欢迎指正。

  1. 为什么TPLinker不适合直接用在NER上,而要用TPLinker_plus?

    个人理解:讨论这个问题就要先了解最初的TPLinker设计模式,除了HandShaking外,作者还预定义了三大种类型ent, head_rel, tail_rel,每个类型下又有子类型,ent:{"O":0,"ENT-H2T":1}, head_rel:{"O":0, "REL-SH2OH":1, "REL-OH2SH":2}, head_tail:{"O":0, "REL-ST2OT":1, "REL-OT2ST":2}。在模型实际做分类时,三大类之间是独立的。以head_rel为例,其原数据整理得y_true矩阵shape为(batch_size, rel_size, shaking_seq_len),这里rel_size即有多少种关系。模型预测的结果y_pred矩阵shape为(batch_size, rel_size, shaking_seq_len, 3)。可以想象,这样的y_true矩阵已经很稀疏了,只有0,1,2三种标签。而如果换做NER,这样(batch_size, ent_size, shaking_seq_len)的矩阵将更加稀疏(只有0,1两种标签),对于一个(ent_size,shaking_seq_len)的矩阵来说,可能只有1至2个地方为1,这将导致模型无限地将预测结果都置为0,从而学习失败(事实实验也是这样)。作者在TPLinker中是如何解决这一问题的呢?其实作者用了个小trick回避了这一问题,具体做法是不再区分实体的类型,将所有实体都看作是DEFAULT类型,这样就把y_true压缩成了(batch_size,shaking_seq_len),降低了矩阵的稀疏性。作者对于这一做法的解释是"Because it is not necessary to recognize the type of entities for the relation extraction task since a predefined relation usually has fixed types for its subject and object.",即实体类别信息对关系抽取不太重要,因为每种关系某种程度上已经预定义了实体类型。综上,如果想直接把TPLinker应用到NER上是不合适的。

    而TPLinker_plus改变了这一做法,他不再将ent, head_rel, tail_rel当做三个独立任务,而是将所有的关系与标签组合,形成一个大的标签库,只用一个HandShaking矩阵表示句子中的所有关系。举个例子,假设有以下3个关系(或实体类型):主演、出生于、作者,那么其与标记标签EH-ET,SH-OH,OH-SH,ST-OT,OT-ST组合后会产生15种tag,这极大地扩充了标签库。相应的,TPLinker_plus的输入也就变成了(batch_size,shaking_seq_len,tag_size)。这样的改变让矩阵中的非0值相对增多,降低了矩阵的稀疏性。(这只是一方面原因,更加重要原因的请参考问题2)

  2. TPLinker_plus还做了哪些优化?

    • 任务模式的转变:从问题1最后的结论可以看出,TPLinker_plus扩充标签库的同时,也将模型任务由原来的多分类任务转变成了多标签分类任务,即每个句子形成的shaking_seq可以出现多个的标签,且出现的数量不确定。形如
    # 设句子的seq_len=10,那么shaking_seq=55
    # 标签组合有8种tag_size=8
    [
        [0,0,1,0,1,0,1,0],
        [1,0,1,0,0,0,0,1],
        ...
        # 剩下的53行
    ]
  3. TPLinker-NER中几个关键词怎么理解?

    对于一个text中含有n个token的情况

    • shaking_matrixn*n的矩阵,若shaking_maxtrix[i][j]=1表示从第i个token到第j个token为一个实体。(实际用到的只有上三角矩阵,以为实体的起始位置一定在结束位置前。)
    • matrix_index:上三角矩阵的坐标,(0,0),(0,1),(0,2)...(0,n-1),(1,1),(1,2)...(1,n-1)...(n-1,n-1)
    • shaking_index:上三角矩阵的索引,长度为$\frac{n(n+1)}{2}$,即[0,1,2,...,n(n+1)/2 - 1]
    • shaking_ind2matrix_ind:将索引映射到矩阵坐标,即[(0,0),(0,1),...,(n-1,n-1)]
    • matrix_ind2shaking_ind:将坐标映射到索引,即
      [[0, 1, 2,    ...,        n-1],
      [0, n, n+1, n+2,  ...,  2n-2]
      ...
      [0, 0, 0, ...,  n(n+1)/2 - 1]]
      
    • spot:一个实体对应的起止span和类型id,例如实体“北京”在矩阵中起始位置在7,终止位置在9,类型为LOC"(id:3),那么其对应spot为(7, 9, 3)。

致谢

Owner
GodK
GodK
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)

Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress

Chen Liang 16 Dec 11, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
Data preprocessing rosetta parser for python

datapreprocessing_rosetta_parser I've never done any NLP or text data processing before, so I wanted to use this hackathon as a learning opportunity,

ASReview hackathon for Follow the Money 2 Nov 28, 2021
Nested Named Entity Recognition for Chinese Biomedical Text

CBio-NAMER CBioNAMER (Nested nAMed Entity Recognition for Chinese Biomedical Text) is our method used in CBLUE (Chinese Biomedical Language Understand

8 Dec 25, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
Saptak Bhoumik 14 May 24, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022