Predict an emoji that is associated with a text

Overview

Sentiment Analysis

Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you tell from a text whether the writer is happy? Angry? Disappointed? Can you put their happiness on a 1-5 scale?

Robust tools for sentiment analysis are often very desirable for companies, for example. Imagine that a company has just launched a new product GizmoX. Now the management wants to know how customers feel about it. Instead of calling or writing each person who bought GizmoX, if we could just have a program go on the web and find text on message boards that discuss GizmoX and automatically rate their attitude toward their recent purchase, valuable information could be obtained, practically for free. Because sentiment analysis is used so widely for this purpose, it is sometimes called Opinion Mining.

Of course, to be really accurate at analyzing sentiment you almost have to have a human in the loop. There are many subtleties in texts that computer algorithms still have a hard time with - detecting sarcasm, for example. But, for many practical purposes you don't have to be 100% accurate in your analysis for it to be useful. A sentiment analyzer that gets it right 80% of the time can still be very valuable.

Emoji Prediction

Emoji prediction is a fun variant of sentiment analysis. When texting your friends, can you tell their emotional state? Are they happy? Could you put an appropriate smiley on each text message you receive? If so, you probably understand their sentiment.

In this project, we build what's called a classifier that learns to associate emojis with sentences. Although there are many technical details, the principle behind the classifier is very simple: we start with a large amount of sentences that contain emojis collected from Twitter messages. Then we look at features from those sentences (words, word pairs, etc.) and train our classifier to associate certain features with their (known) smileys. For example, if the classifier sees the word "happy" in many sentences that also has the smiley 😂 , it will learn to classify such messages as 😂 . On the other hand, the word "happy" could be preceded by "not" in which case we shouldn't rely on just single words to be associated with certain smileys. For this reason, we also look at word sequences, and in this case, would learn that "not happy" is more strongly associated with sadness, outweighing the "happy" part. The classifier learns to look at the totality of many word sequences found in a sentence and figures out what class of smiley would best characterize that sentence. Although the principle is simple, if we have millions of words of text with known smileys associated with the sentences, we can actually learn to do pretty well on this task.

If you don't want to actually re-create the classifier, you can skip ahead to the Error Analysis section where you'll see how well it does in predicting 7 different smileys after being "trained" on some text.

Technical: Quickstart

To use this project, it's required to install python3, jupyter notebook, and some python libraries.

Install

Install python3

If you don't have python3 on your computer, there are two options:

  • Download python3 from Anaconda, which includes Python, Jupyter Notebook, and the other libraries.
  • Download python3 from python.org

Install packages

All packages used for this project are written in requirements.txt. To install, you can run

$ pip3 install -r requirements.txt

Download project

To download this project repository, you can run

$ git clone https://github.com/TetsumichiUmada/text2emoji.git

Run jupyter notebook

To start jupyter notebook, you move to the directory with cd path_to/text2emoji, then run

$ jupyter notebook

See Running the Notebook for more details.

Project Details

The goal of this project is to predict an emoji that is associated with a text message. To accomplish this task, we train and test several supervised machine learning models on a data to predict a sentiment associated with a text message. Then, we represent the predicted sentiment as an emoji.

Data Sets

The data comes from the DeepEmoji/data repository. Since the file format is a pickle, we wrote a python 2 script to covert a pickle to a txt file. The data (both pickle and txt files) and scripts are stored in the text2emoji/data directory.

Among the available data on the repository, we use the PsychExp dataset for this project. In the file, there are 7840 samples, and each line contains a text message and its sentimental labels which are represented as a vector [joy, fear, anger, sadness, disgust, shame, guilt].

In the txt file, each line is formatted like below:

[ 1.  0.  0.  0.  0.  0.  0.] Passed the last exam.

Since the first position of the vector is 1, the text is labeled as an instance of joy.

For more information about the original data sets, please check DeepEmoji/data and text2emoji/data.

Preprocess and Features

How does a computer understand a text message and analyze its sentiment? A text message is a series of words. To be able to process text messages, we need to convert text into numerical features.

One of the methods to convert a text to numerical features is called an n-grams. An n-gram is a sequence of n words from a given text. A 2-gram(bigram) is a sequence of two words, for instance, "thank you" or "your project", and a 3-gram(trigram) is a three-word sequence of words like "please work on" or "turn your homework".

For this project, first, we convert all the texts into lower case. Then, we create n-grams with a range from 1 to 4 and count how many times each n-gram appears in the text.

Models and Results

Building a machine learning model involves mainly two steps. The first step is to train a model. After that, we evaluate the model on a separate data set---i.e. we don't evaluate performance on the same data we learned from. For this project, we use four classifiers and train each classier to see which one works better for this project. To train and test the performance of each model, we split the data set into a "training set" and a "test set", in the ratio of 80% and 20%. By separating the data, we can make sure that the model generalizes well and can perform well in the real world.

We evaluate the performance of each model by calculating an accuracy score. The accuracy score is simply the proportion of classifications that were done correctly and is calculated by

$$ \text{Accuracy} = \frac{\text{number of correct classifications}}{\text{total number of classifications made}} $$

For this project, we tested following classifiers. Their accuracy scores are summarized in the table below.

Classifier Training Accuracy Test Accuracy
SVC 0.1458890 0.1410428
LinearSVC 0.9988302 0.5768717
RandomForestClassifier 0.9911430 0.4304813
DecisionTreeClassifier 0.9988302 0.4585561

Based on the accuracy scores, it seems like SVC works, but gives poor results. The LinearSVC classifier works quite well although we see some overfitting (meaning that the training accuracy is high and test accuracy is significantly lower). This means the model has difficulty generalizing to examples it hasn't seen.

We can observe the same phenomenon for the other classifiers. In the error analysis, we therefore focus on the LinearSVC classifier that performs the best.

Error Analysis

We analyze the classification results from the best performing (LinearSVC) model, using a confusion matrix. A confusion matrix is a table which summarizes the performance of a classification algorithm and reveals the type of misclassifications that occur. In other words, it shows the classifier's confusion between classes. The rows in the matrix represent the true labels and the columns are predicted labels. A perfect classifier would have big numbers on the main diagonal and zeroes everywhere else.

It is obvious that the classifier has learned many significant patterns: the numbers along the diagonal are much higher than off the diagonal. That means true anger most often gets classified as anger, and so on.

On the other hand, the classifier tends to often misclassify text messages associated with guilt, shame, and anger. This is perhaps because it's hard to pinpoint specific words or sequences of words that characterize these sentiments. On the other hand, messages involving joy are more likely to have words such as "good", "like", and "happy", and the classifier is able to handle such sentiments much better.

Future Work

To improve on the current results, we probably, first and foremost, need access to more data for training. At the same time, adding more specific features to extract from the text may also help. For example, paying attention to usage of all caps, punctuation patterns, and similar things would probably improve the classifier.

A statistical analysis of useful features through a Chi-squared test to find out more informative tokens could also provide insight. As in many other tasks, moving from a linear classifier to a deep learning (neural network) model would probably also boost the performance.

Example/Demo

Here are four example sentences and the emojis the classifier associates them with:

😂 Thank you for dinner!
😢 I don't like it
😱 My car skidded on the wet street
😢 My cat died

References

Owner
Tetsumichi(Telly) Umada
Master student @ Univ. of Colorado, Boulder
Tetsumichi(Telly) Umada
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
1 Jun 28, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023
Codename generator using WordNet parts of speech database

codenames Codename generator using WordNet parts of speech database References: https://possiblywrong.wordpress.com/2021/09/13/code-name-generator/ ht

possiblywrong 27 Oct 30, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022