Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

Overview

.NET Interactive Notebooks for C#

Welcome to the home of .NET interactive notebooks for C#!

How to Install

  1. Download the .NET Coding Pack for VS Code for Windows or macOS.
  2. Install the .NET Interactive Notebooks extension.

For more information and resources, visit Learn to code C#.

C# 101

Download or clone this repo and open the csharp-101 folder in VS Code to get started with the C# 101 notebooks. Or, if you want just tap on one of the Notebook links below and automatically have it open in VS Code!

# Topic Notebook Link Video Link Documentation
1 Hello World 01 Notebook 01 Video Intro to C#
2 The Basics of Strings 02 Notebook 02 Video Intro to C#
3 Searching Strings 03 Notebook 03 Video Intro to C#
4 Numbers and Integers Math 04 Notebook 04 Video Numbers in C#
5 Numbers and Integer Precision 05 Notebook 05 Video Numbers in C#
6 Numbers and Decimals 06 Notebook 06 Video Numbers in C#
7 Branches (if) 07 Notebook 07 Video Branches and Loops in C#
8 What Are Loops? 08 Notebook 08 Video Branches and Loops in C#
9 Combining Branches and Loops 09 Notebook 09 Video Branches and Loops in C#
10 Arrays, Lists, and Collections 10 Notebook 10 Video Arrays, Lists, and Collections in C#
11 Search, Sort, and Index Lists 11 Notebook 11 Video Arrays, Lists, and Collections in C#
12 Lists of Other Types 12 Notebook 12 Video Arrays, Lists, and Collections in C#
13 Objects and Classes 13 Notebook 13 Video Object Oriented Coding in C#
14 Methods and Members 14 Notebook 14 Video Object Oriented Coding in C#
15 Methods and Exceptions 15 Notebook 15 Video Object Oriented Coding in C#

.NET Foundation

.NET Interative Notebooks for C# is a .NET Foundation project.

There are many .NET related projects on GitHub.

  • .NET home repo - links to 100s of .NET projects, from Microsoft and the community.
  • ASP.NET Core home - the best place to start learning about ASP.NET Core.

This project has adopted the code of conduct defined by the Contributor Covenant to clarify expected behavior in our community. For more information, see the .NET Foundation Code of Conduct.

License

.NET (including the csharp-notebooks repo) is licensed under the MIT license.

Owner
.NET Platform
Home of the open source .NET platform
.NET Platform
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
πŸ₯‡ LG-AI-Challenge 2022 1μœ„ μ†”λ£¨μ…˜ μž…λ‹ˆλ‹€.

LG-AI-Challenge-for-Plant-Classification Daconμ—μ„œ μ§„ν–‰λœ 농업 ν™˜κ²½ 변화에 λ”°λ₯Έ μž‘λ¬Ό 병해 진단 AI κ²½μ§„λŒ€νšŒ 에 λŒ€ν•œ μ½”λ“œμž…λ‹ˆλ‹€. (colab directory에 μ½”λ“œκ°€ 잘 정리 λ˜μ–΄μžˆμŠ΅λ‹ˆλ‹€.) Requirements python

siwooyong 10 Jun 30, 2022
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020