Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Related tags

Deep Learningpgn2tex
Overview

Pgn2Latex (WIP)

A simple script to make pdf from pgn files and studies. It's still work in progress and I hope to improve it in the future. Please feel to reach out or to contribute by submitting issues and pull requests!

Examples

Some examples can be found in the examples/ directory. At the moment there is a book on the Stafford Gambit based on this study and a book of puzzles.

Requirements

Python

pip install -r requirements.txt

Latex

It uses xskak and skak to draw the chessboards. The latex files should be compiled using xelatex.

Usage

Studies

> python pgn2tex/study.py --help
usage: study.py [-h] [--mode {single,study}] [--players] [--template TEMPLATE] [--front-page FRONT_PAGE] [-o OUTPUT] file

Convert a PGN file to a latex document. It is supposed to be used to create book from a study or a single game analysis.

positional arguments:
  file                  PGN File to parse

options:
  -h, --help            show this help message and exit
  --mode {single,study}, -m {single,study}
                        Wether to treat each game independently or as one single large study with several chapters.
  --players, -p         Add player names
  --template TEMPLATE, -t TEMPLATE
                        Template file to use, if none only the latex content is generated with headers / document class, it can be input later on in any latex document.
  --front-page FRONT_PAGE, -f FRONT_PAGE
                        Path to a pdf frontpage
  -o OUTPUT, --output OUTPUT
> python pgn2tex/study.py examples/lichess_study_stafford-gambit_by_wyggam_2020.10.04.pgn --mode study -o examples/stafford.tex --template pgn2tex/templates/book.tex --front-page pgn2tex/templates/frontpage_stafford.pdf
> cd examples
> xelatex stafford.tex
> xelatex stafford.tex # for table of content and cross refs

Puzzles

You first need to download the lichess puzzle database and the themes description, assuming you are in the root directory of the repo:

mkdir -p data 
cd data 
wget https://database.lichess.org/lichess_db_puzzle.csv.bz2 && bzip2 -d lichess_db_puzzle.csv.bz2 
wget https://raw.githubusercontent.com/lichess-org/lila/master/translation/source/puzzleTheme.xml
cd ..

Usage:

usage: puzzles.py [-h] [--problems PROBLEMS]
                  [--theme {advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} [{advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} ...]]
                  [-m MIN_RATING] [-s STEP_SIZE] [-M MAX_RATING] [--template TEMPLATE] [--front-page FRONT_PAGE] [--output OUTPUT]

Generate latex with chess puzzles from the lichess database

options:
  -h, --help            show this help message and exit
  --problems PROBLEMS, -p PROBLEMS
                        Max number of problems to sample in each theme/rating range.
  --theme {advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} [{advancedPawn,advantage,anastasiaMate,arabianMate,attackingF2F7,attraction,backRankMate,bishopEndgame,bodenMate,castling,capturingDefender,crushing,doubleBishopMate,dovetailMate,equality,kingsideAttack,clearance,defensiveMove,deflection,discoveredAttack,doubleCheck,endgame,exposedKing,fork,hangingPiece,hookMate,interference,intermezzo,knightEndgame,long,master,masterVsMaster,mate,mateIn1,mateIn2,mateIn3,mateIn4,mateIn5,middlegame,oneMove,opening,pawnEndgame,pin,promotion,queenEndgame,queenRookEndgame,queensideAttack,quietMove,rookEndgame,sacrifice,short,skewer,smotheredMate,superGM,trappedPiece,underPromotion,veryLong,xRayAttack,zugzwang,healthyMix,playerGames,puzzleDownloadInformation} ...]
                        Name of the themes to be used.
  -m MIN_RATING, --min-rating MIN_RATING
                        Minimum rating of the problems.
  -s STEP_SIZE, --step-size STEP_SIZE
                        Step size from problem ratings
  -M MAX_RATING, --max-rating MAX_RATING
                        Maximum rating of the problems.
  --template TEMPLATE, -t TEMPLATE
                        Template file to use, if none only the latex content is generated with headers / document class, it can be input later on in any latex document.
  --front-page FRONT_PAGE, -f FRONT_PAGE
                        Path to a pdf frontpage
  --output OUTPUT, -o OUTPUT
                        Output file

Example:

python pgn2tex/puzzles.py --template pgn2tex/templates/book.tex --front-page pgn2tex/templates/frontpage_puzzles.pdf  --output examples/puzzles.tex
cd examples
xelatex puzzles.tex
xelatex puzzles.tex # for table of contents

Code formatting

The code is formatted using Black

Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022