Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Overview

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

The codes for simulations were written in Fortran and compiled with the Intel Fortran Compiler. Data analysis and figures were done Python 3.10 and the following open source libraries: pandas, matplotlib and seaborn.

In this repository we show codes for simulations and processing data, as well as datasets used.

The preprint is available at https://arxiv.org/abs/2201.03476. The following BibTeX code can be used to cite it:

@misc{costa2022compartmental,
      title={Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil}, 
      author={Guilherme S. Costa and Wesley Cota and Silvio C. Ferreira},
      year={2022},
      eprint={2201.03476},
      archivePrefix={arXiv},
      primaryClass={q-bio.PE}
}

See also Effects of infection fatality ratio and social contact matrices on vaccine prioritization strategies and Outbreak diversity in epidemic waves propagating through distinct geographical scales.

Dictionaries

Municipalities :The files (a) dictES.csv and (b) dictPR.csv yield some information about municipalities of (a) ES (B) PR states. These files have six columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the city
  3. name: name of the city
  4. intermID: official code of intermediate region to which the city belongs
  5. imedID: official code of immediate region to which the city belongs
  6. totPop2019: population of the city estimated in 2019

Immediate and intermediate regions The files (a) dictImed.csv and (b) dictInterm.csv yield some information about (a) Immediate and (b) Intermediate regions of PR and ES. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. imedID or \verb|intermID|: official code to identify the region
  3. name: name of the region
  4. state: state to which the region belongs
  5. totPop2019: population of the region estimated in 2019

States The file dictUF.csv yield some information about PR and ES states. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the state
  3. name: name of the state
  4. uf: abbreviation of the state's name
  5. totPop2019: population of the state estimated in 2019

Time series

Cases and deaths: The files (a) PR.csv, (b) ES.csv, (c) saopaulo.csv and (d) manaus.csv yield the time series of confirmed cases and deaths since April 1, 2020 for (a) All cities of PR state, (b) All cities of ES state, (c) São Paulo city and (d) Manaus city. These files have seven columns:

  1. date: date
  2. ibgeID: official code to identify the city
  3. newCases: new confirmed cases on that day
  4. newDeaths: new confirmed deaths on that day
  5. city: name of the city
  6. totalCases: accumulated cases
  7. totalDeaths: accumulated deaths

Calibration: Within files (a) imed.zip and (b) state.zip we have the time series of accumulated cases and fatality ratio, aggregated for different geographical levels. In this, we have two types of files: casesXX.dat (XX refers to the calibrating IDs mentioned before) are accumulated cases while lethXX.dat are the daily fatalities).

Calibration Code

The file calibra.f90 is a program written in Fortran that executes the calibration algorithm described on Methods section of the main paper $1000$ times with different epidemiological parameters. This program has four inputs: the time series of accumulated cases and fatality, the initial date for calibration and the population of the region (state, city, etc). Besides that, this program has two output files: epiQuantities.dat and hiddenCompart.dat. The first has seven columns:

  1. Days from the initial time
  2. Calibrated confirmed cases
  3. Reference cases
  4. Effective reproductive number
  5. Fraction of susceptible population
  6. Underreporting coefficient
  7. Sample

On hiddenCompart.dat, we have time series for some compartments in the model: from left to right S, E, A, I, CA + CI, R + RI + RA + D and sample number.

Python scripts and figures

Calculation of underreporting coefficient: the file underreporting.ipynb is a I-python script that calculates the underreporting coefficient starting from a time series of confirmed cases and deaths. At the end, it exhibits a graphic showing the evolution of this coefficient.

Template for figures The majority of figures in this work were generated with matplotlib and seaborn packages of Python 3.7. File format_covid19br.mplstyle contains the template (font family and sizes) for generating those figures and graphics.

Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
a Lightweight library for sequential learning agents, including reinforcement learning

SaLinA: SaLinA - A Flexible and Simple Library for Learning Sequential Agents (including Reinforcement Learning) TL;DR salina is a lightweight library

Facebook Research 405 Dec 17, 2022
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022