PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Overview

Unbiased Teacher for Semi-Supervised Object Detection

License: MIT

This is the PyTorch implementation of our paper:
Unbiased Teacher for Semi-Supervised Object Detection
Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao Zhang, Bichen Wu, Zsolt Kira, Peter Vajda
International Conference on Learning Representations (ICLR), 2021

[arXiv] [OpenReview] [Project]

Installation

Prerequisites

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation.

Install PyTorch in Conda env

# create conda env
conda create -n detectron2 python=3.6
# activate the enviorment
conda activate detectron2
# install PyTorch >=1.5 with GPU
conda install pytorch torchvision -c pytorch

Build Detectron2 from Source

Follow the INSTALL.md to install Detectron2.

Dataset download

  1. Download COCO dataset
# download images
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip

# download annotations
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
  1. Organize the dataset as following:
unbiased_teacher/
└── datasets/
    └── coco/
        ├── train2017/
        ├── val2017/
        └── annotations/
        	├── instances_train2017.json
        	└── instances_val2017.json

Training

  • Train the Unbiased Teacher under 1% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup1_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16
  • Train the Unbiased Teacher under 2% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup2_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16
  • Train the Unbiased Teacher under 5% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup5_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16
  • Train the Unbiased Teacher under 10% COCO-supervision
python train_net.py \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup10_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16

Resume the training

python train_net.py \
      --resume \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup10_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16 MODEL.WEIGHTS <your weight>.pth

Evaluation

python train_net.py \
      --eval-only \
      --num-gpus 8 \
      --config configs/coco_supervision/faster_rcnn_R_50_FPN_sup10_run1.yaml \
       SOLVER.IMG_PER_BATCH_LABEL 16 SOLVER.IMG_PER_BATCH_UNLABEL 16 MODEL.WEIGHTS <your weight>.pth

Model Zoo

Coming soon

FAQ

  1. Q: Using the lower batch size and fewer GPUs cannot achieve the results presented in the paper?
  • A: We train the model with 32 labeled images + 32 unlabeled images per batch for the results presented in the paper, and using the lower batch size leads to lower accuracy. For example, in the 1% COCO-supervision setting, the model trained with 16 labeled images + 16 unlabeled images achieves 19.9 AP as shown in the following table.
Experiment GPUs Batch size per node Batch size AP
8 GPUs/node; 4 nodes 8 labeled imgs + 8 unlabeled imgs 32 labeled img + 32 unlabeled imgs 20.75
8 GPUs/node; 1 node 16 labeled imgs + 16 unlabeled imgs 16 labeled imgs + 16 unlabeled imgs 19.9

Citing Unbiased Teacher

If you use Unbiased Teacher in your research or wish to refer to the results published in the paper, please use the following BibTeX entry.

@inproceedings{liu2021unbiased,
    title={Unbiased Teacher for Semi-Supervised Object Detection},
    author={Liu, Yen-Cheng and Ma, Chih-Yao and He, Zijian and Kuo, Chia-Wen and Chen, Kan and Zhang, Peizhao and Wu, Bichen and Kira, Zsolt and Vajda, Peter},
    booktitle={Proceedings of the International Conference on Learning Representations (ICLR)},
    year={2021},
}

Also, if you use Detectron2 in your research, please use the following BibTeX entry.

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}

License

This project is licensed under MIT License, as found in the LICENSE file.

Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022