Ganilla - Official Pytorch implementation of GANILLA

Overview

GANILLA

We provide PyTorch implementation for:

GANILLA: Generative Adversarial Networks for Image to Illustration Translation.

Paper Arxiv

Updates

Dataset Stats:

Ill stats

Sample Images:

Ill images

GANILLA:

GANILLA results on the illustration dataset:

GANILLA results

Comparison with other methods:

comparison

Style transfer using Miyazaki's anime images:

GANILLA miyazaki

Ablation Experiments:

GANILLA ablation

Prerequisites

  • Linux, macOS or Windows
  • Python 2 or 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Downloading Datasets

Please refer to datasets.md for details.

Installation

  • Clone this repo:
git clone https://github.com/giddyyupp/ganilla.git
cd ganilla
pip install -r requirements.txt
  • For Conda users, we include a script ./scripts/conda_deps.sh to install PyTorch and other libraries.

GANILLA train/test

  • Download a GANILLA/CycleGAN dataset (e.g. maps):
bash ./datasets/download_cyclegan_dataset.sh maps
  • Train a model:
#!./scripts/train_ganilla.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --netG resnet_fpn
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/maps_cyclegan/web/index.html
  • Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --netG resnet_fpn

The test results will be saved to a html file here: ./results/maps_cyclegan/latest_test/index.html.

You can find more scripts at scripts directory.

Apply a pre-trained model (GANILLA)

  • You can download pretrained models using following link

Put a pretrained model under ./checkpoints/{name}_pretrained/100_net_G.pth.

  • To test the model, you also need to download the monet2photo dataset and use trainB images as source:
bash ./datasets/download_cyclegan_dataset.sh monet2photo
  • Then generate the results using
python test.py --dataroot datasets/monet2photo/testB --name {name}_pretrained --model test

The option --model test is used for generating results of GANILLA only for one side. python test.py --model cycle_gan will require loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use --dataset_mode single and --model test options. Here is a script to apply a model to Facade label maps (stored in the directory facades/testB).
#!./scripts/test_single.sh
python test.py --dataroot ./datasets/monet2photo/testB/ --name {your_trained_model_name} --model test

You might want to specify --netG to match the generator architecture of the trained model.

Style & Content CNN

We shared style & content CNNs in this repo. It contains train/test procedure as well as pretrained weights for both cnns.

Training/Test Tips

Best practice for training and testing your models.

Frequently Asked Questions

Before you post a new question, please first look at the above Q & A and existing GitHub issues.

Citation

If you use this code for your research, please cite our papers.

@article{hicsonmez2020ganilla,
  title={GANILLA: Generative adversarial networks for image to illustration translation},
  author={Hicsonmez, Samet and Samet, Nermin and Akbas, Emre and Duygulu, Pinar},
  journal={Image and Vision Computing},
  pages={103886},
  year={2020},
  publisher={Elsevier}
}

@inproceedings{Hicsonmez:2017:DDN:3078971.3078982,
 author = {Hicsonmez, Samet and Samet, Nermin and Sener, Fadime and Duygulu, Pinar},
 title = {DRAW: Deep Networks for Recognizing Styles of Artists Who Illustrate Children's Books},
 booktitle = {Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval},
 year = {2017}
}

Acknowledgments

Our code is heavily inspired by CycleGAN.

The numerical calculations reported in this work were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Owner
Samet Hi
Hacettepe University
Samet Hi
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
The official codes for the ICCV2021 Oral presentation "Rethinking Counting and Localization in Crowds: A Purely Point-Based Framework"

P2PNet (ICCV2021 Oral Presentation) This repository contains codes for the official implementation in PyTorch of P2PNet as described in Rethinking Cou

Tencent YouTu Research 208 Dec 26, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022