Ganilla - Official Pytorch implementation of GANILLA

Overview

GANILLA

We provide PyTorch implementation for:

GANILLA: Generative Adversarial Networks for Image to Illustration Translation.

Paper Arxiv

Updates

Dataset Stats:

Ill stats

Sample Images:

Ill images

GANILLA:

GANILLA results on the illustration dataset:

GANILLA results

Comparison with other methods:

comparison

Style transfer using Miyazaki's anime images:

GANILLA miyazaki

Ablation Experiments:

GANILLA ablation

Prerequisites

  • Linux, macOS or Windows
  • Python 2 or 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Downloading Datasets

Please refer to datasets.md for details.

Installation

  • Clone this repo:
git clone https://github.com/giddyyupp/ganilla.git
cd ganilla
pip install -r requirements.txt
  • For Conda users, we include a script ./scripts/conda_deps.sh to install PyTorch and other libraries.

GANILLA train/test

  • Download a GANILLA/CycleGAN dataset (e.g. maps):
bash ./datasets/download_cyclegan_dataset.sh maps
  • Train a model:
#!./scripts/train_ganilla.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --netG resnet_fpn
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097. To see more intermediate results, check out ./checkpoints/maps_cyclegan/web/index.html
  • Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --netG resnet_fpn

The test results will be saved to a html file here: ./results/maps_cyclegan/latest_test/index.html.

You can find more scripts at scripts directory.

Apply a pre-trained model (GANILLA)

  • You can download pretrained models using following link

Put a pretrained model under ./checkpoints/{name}_pretrained/100_net_G.pth.

  • To test the model, you also need to download the monet2photo dataset and use trainB images as source:
bash ./datasets/download_cyclegan_dataset.sh monet2photo
  • Then generate the results using
python test.py --dataroot datasets/monet2photo/testB --name {name}_pretrained --model test

The option --model test is used for generating results of GANILLA only for one side. python test.py --model cycle_gan will require loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use --dataset_mode single and --model test options. Here is a script to apply a model to Facade label maps (stored in the directory facades/testB).
#!./scripts/test_single.sh
python test.py --dataroot ./datasets/monet2photo/testB/ --name {your_trained_model_name} --model test

You might want to specify --netG to match the generator architecture of the trained model.

Style & Content CNN

We shared style & content CNNs in this repo. It contains train/test procedure as well as pretrained weights for both cnns.

Training/Test Tips

Best practice for training and testing your models.

Frequently Asked Questions

Before you post a new question, please first look at the above Q & A and existing GitHub issues.

Citation

If you use this code for your research, please cite our papers.

@article{hicsonmez2020ganilla,
  title={GANILLA: Generative adversarial networks for image to illustration translation},
  author={Hicsonmez, Samet and Samet, Nermin and Akbas, Emre and Duygulu, Pinar},
  journal={Image and Vision Computing},
  pages={103886},
  year={2020},
  publisher={Elsevier}
}

@inproceedings{Hicsonmez:2017:DDN:3078971.3078982,
 author = {Hicsonmez, Samet and Samet, Nermin and Sener, Fadime and Duygulu, Pinar},
 title = {DRAW: Deep Networks for Recognizing Styles of Artists Who Illustrate Children's Books},
 booktitle = {Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval},
 year = {2017}
}

Acknowledgments

Our code is heavily inspired by CycleGAN.

The numerical calculations reported in this work were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Owner
Samet Hi
Hacettepe University
Samet Hi
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Western-3DSlicer-Modules - Point-Set Registrations for Ultrasound Probe Calibrations

Point-Set Registrations for Ultrasound Probe Calibrations -Undergraduate Thesis-

Matteo Tanzi 0 May 04, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022