Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Overview

TensorDiffEq logo

Package Build Package Release pypi downloads python versions

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly!

Efficient and Scalable Physics-Informed Deep Learning

Collocation-based PINN PDE solvers for prediction and discovery methods on top of Tensorflow 2.X for multi-worker distributed computing.

Use TensorDiffEq if you require:

  • A meshless PINN solver that can distribute over multiple workers (GPUs) for forward problems (inference) and inverse problems (discovery)
  • Scalable domains - Iterated solver construction allows for N-D spatio-temporal support
    • support for N-D spatial domains with no time element is included
  • Self-Adaptive Collocation methods for forward and inverse PINNs
  • Intuitive user interface allowing for explicit definitions of variable domains, boundary conditions, initial conditions, and strong-form PDEs

What makes TensorDiffEq different?

  • Completely open-source

  • Self-Adaptive Solvers for forward and inverse problems, leading to increased accuracy of the solution and stability in training, resulting in less overall training time

  • Multi-GPU distributed training for large or fine-grain spatio-temporal domains

  • Built on top of Tensorflow 2.0 for increased support in new functionality exclusive to recent TF releases, such as XLA support, autograph for efficent graph-building, and grappler support for graph optimization* - with no chance of the source code being sunset in a further Tensorflow version release

  • Intuitive interface - defining domains, BCs, ICs, and strong-form PDEs in "plain english"

*In development

If you use TensorDiffEq in your work, please cite it via:

@article{mcclenny2021tensordiffeq,
  title={TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural Networks},
  author={McClenny, Levi D and Haile, Mulugeta A and Braga-Neto, Ulisses M},
  journal={arXiv preprint arXiv:2103.16034},
  year={2021}
}

Thanks to our additional contributors:

@marcelodallaqua, @ragusa, @emiliocoutinho

Comments
  • Latest version of package

    Latest version of package

    The examples in the doc use the latest code of master branch but the library on Pypi is still the version in May. Can you build the lib and update the version on Pypi?

    opened by devzhk 5
  • ADAM training on batches

    ADAM training on batches

    It is possible to define a batch size and this will be applied to the calculation of the residual loss function, in splitting the collocation points in batches during the training.

    opened by emiliocoutinho 3
  • Pull Request using PyCharm

    Pull Request using PyCharm

    Dear Levi,

    I tried to make a Pull Request on this repository using PyCharm, and I received the following message:

    Although you appear to have the correct authorization credentials, the tensordiffeq organization has enabled OAuth App access restrictions, meaning that data access to third-parties is limited. For more information on these restrictions, including how to whitelist this app, visit https://help.github.com/articles/restricting-access-to-your-organization-s-data/

    I would kindly ask you to authorize PyCharm to access your organization data to use the GUI to make future pull requests.

    Best Regards

    opened by emiliocoutinho 1
  • Update method def get_sizes of utils.py

    Update method def get_sizes of utils.py

    Fix bug on the method def get_sizes(layer_sizes) of utils.py. The method was only allowing neural nets with an identical number of nodes in each hidden layer. Which was making the L- BFGS optimization to crash.

    opened by marcelodallaqua 1
  • model.save ?

    model.save ?

    Sometimes, it's useful to save the model for later use. I couldn't find a .save method and pickle (and dill) didn't let me dump the object for later re-use. (example of error with pickle: Can't pickle local object 'make_gradient_clipnorm_fn..').

    Is it currently possible to save the model? Thanks!

    opened by ragusa 1
  • add model.save and model.load_model

    add model.save and model.load_model

    Add model.save and model.load_model to CollocationSolverND class ref #3

    Will be released in the next stable.

    currently this can be done by using the Keras integration via running model.u_model.save("path/to/file"). This change will allow a direct save by calling model.save() on the CollocationSolverND class. Same with load_model().

    The docs will be updated to reflect this change.

    opened by levimcclenny 0
  • 2D Burgers Equation

    2D Burgers Equation

    Hello @levimcclenny and thanks for recommending this library!

    I have modified the 1D burger example to be in 2D, but I did not get good comparison results. Any suggestions?

    import math
    import scipy.io
    import tensordiffeq as tdq
    from tensordiffeq.boundaries import *
    from tensordiffeq.models import CollocationSolverND
    
    Domain = DomainND(["x", "y", "t"], time_var='t')
    
    Domain.add("x", [-1.0, 1.0], 256)
    Domain.add("y", [-1.0, 1.0], 256)
    Domain.add("t", [0.0, 1.0], 100)
    
    N_f = 10000
    Domain.generate_collocation_points(N_f)
    
    
    def func_ic(x,y):
        p =2
        q =1
        return np.sin (p * math.pi * x) * np.sin(q * math.pi * y)
        
    
    init = IC(Domain, [func_ic], var=[['x','y']])
    upper_x = dirichletBC(Domain, val=0.0, var='x', target="upper")
    lower_x = dirichletBC(Domain, val=0.0, var='x', target="lower")
    upper_y = dirichletBC(Domain, val=0.0, var='y', target="upper")
    lower_y = dirichletBC(Domain, val=0.0, var='y', target="lower")
    
    BCs = [init, upper_x, lower_x, upper_y, lower_y]
    
    
    def f_model(u_model, x, y, t):
        u = u_model(tf.concat([x, y, t], 1))
        u_x = tf.gradients(u, x)
        u_xx = tf.gradients(u_x, x)
        u_y = tf.gradients(u, y)
        u_yy = tf.gradients(u_y, y)
        u_t = tf.gradients(u, t)
        f_u = u_t + u * (u_x + u_y) - (0.01 / tf.constant(math.pi)) * (u_xx+u_yy)
        return f_u
    
    
    layer_sizes = [3, 20, 20, 20, 20, 20, 20, 20, 20, 1]
    
    model = CollocationSolverND()
    model.compile(layer_sizes, f_model, Domain, BCs)
    
    # to reproduce results from Raissi and the SA-PINNs paper, train for 10k newton and 10k adam
    model.fit(tf_iter=10000, newton_iter=10000)
    
    model.save("burger2D_Training_Model")
    #model.load("burger2D_Training_Model")
    
    #######################################################
    #################### PLOTTING #########################
    #######################################################
    
    data = np.load('py-pde_2D_burger_data.npz')
    
    Exact = data['u_output']
    Exact_u = np.real(Exact)
    
    x = Domain.domaindict[0]['xlinspace']
    y = Domain.domaindict[1]['ylinspace']
    t = Domain.domaindict[2]["tlinspace"]
    
    X, Y, T = np.meshgrid(x, y, t)
    
    X_star = np.hstack((X.flatten()[:, None], Y.flatten()[:, None], T.flatten()[:, None]))
    u_star = Exact_u.T.flatten()[:, None]
    
    u_pred, f_u_pred = model.predict(X_star)
    
    error_u = tdq.helpers.find_L2_error(u_pred, u_star)
    print('Error u: %e' % (error_u))
    
    lb = np.array([-1.0, -1.0, 0.0])
    ub = np.array([1.0, 1.0, 1])
    
    tdq.plotting.plot_solution_domain2D(model, [x, y, t], ub=ub, lb=lb, Exact_u=Exact_u.T)
    
    
    Screen Shot 2022-03-04 at 11 15 31 PM Screen Shot 2022-03-04 at 11 15 44 PM Screen Shot 2022-03-04 at 11 15 18 PM
    opened by engsbk 3
  • 2D Wave Equation

    2D Wave Equation

    Thank you for the great contribution!

    I'm trying to extend the 1D example problems to 2D, but I want to make sure my changes are in the correct place:

    1. Dimension variables. I changed them like so:

    Domain = DomainND(["x", "y", "t"], time_var='t')

    Domain.add("x", [0.0, 5.0], 100) Domain.add("y", [0.0, 5.0], 100) Domain.add("t", [0.0, 5.0], 100)

    1. My IC is zero, but for the BCs I'm not sure how to define the left and right borders, please let me know if my implementation is correct:
    
    def func_ic(x,y):
        return 0
    
    init = IC(Domain, [func_ic], var=[['x','y']])
    upper_x = dirichletBC(Domain, val=0.0, var='x', target="upper")
    lower_x = dirichletBC(Domain, val=0.0, var='x', target="lower")
    upper_y = dirichletBC(Domain, val=0.0, var='y', target="upper")
    lower_y = dirichletBC(Domain, val=0.0, var='y', target="lower")
            
    BCs = [init, upper_x, lower_x, upper_y, lower_y]
    

    All of my BCs and ICs are zero. And my equation has a (forcing) time-dependent source term as such:

    
    def f_model(u_model, x, y, t):
        c = tf.constant(1, dtype = tf.float32)
        Amp = tf.constant(2, dtype = tf.float32)
        freq = tf.constant(1, dtype = tf.float32)
        sigma = tf.constant(0.2, dtype = tf.float32)
    
        source_x = tf.constant(0.5, dtype = tf.float32)
        source_y = tf.constant(2.5, dtype = tf.float32)
    
        GP = Amp * tf.exp(-0.5*( ((x-source_x)/sigma)**2 + ((y-source_y)/sigma)**2 ))
        
        S = GP * tf.sin( 2 * tf.constant(math.pi)  * freq * t )
        u = u_model(tf.concat([x,y,t], 1))
        u_x = tf.gradients(u,x)
        u_xx = tf.gradients(u_x, x)
        u_y = tf.gradients(u,y)
        u_yy = tf.gradients(u_y, y)
        u_t = tf.gradients(u,t)
        u_tt = tf.gradients(u_t,t)
    
    
        f_u = u_xx + u_yy - (1/c**2) * u_tt + S
        
        return f_u
    

    Please advise.

    Looking forward to your reply!

    opened by engsbk 13
  • Reproducibility

    Reproducibility

    Dear @levimcclenny,

    Have you considered in adapt TensorDiffEq to be deterministic? In the way the code is implemented, we can find two sources of randomness:

    • The function Domain.generate_collocation_points has a random number generation
    • The TensorFlow training procedure (weights initialization and possibility of the use o random batches)

    Both sources of randomness can be solved with not much effort. We can define a random state for the first one that can be passed to the function Domain.generate_collocation_points. For the second, we can use the implementation provided on Framework Determinism. I have used the procedures suggested by this code, and the results of TensorFlow are always reproducible (CPU or GPU, serial or distributed).

    If you want, I can implement these two features.

    Best Regards

    opened by emiliocoutinho 3
Releases(v0.2.0)
Owner
tensordiffeq
Scalable PINN solvers for PDE Inference and Discovery
tensordiffeq
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
The first dataset on shadow generation for the foreground object in real-world scenes.

Object-Shadow-Generation-Dataset-DESOBA Object Shadow Generation is to deal with the shadow inconsistency between the foreground object and the backgr

BCMI 105 Dec 30, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Omniverse sample scripts ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/om

ft-lab (Yutaka Yoshisaka) 37 Nov 17, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022