Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Related tags

Deep LearningPSVL
Overview

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL)

This repository is for Zero-shot Natural Language Video Localization. (ICCV 2021, Oral)

We first propose a novel task of zero-shot natural language video localization. The proposed task setup does not require any paired annotation cost for NLVL task but only requires easily available text corpora, off-the-shelf object detector, and a collection of videos to localize. To address the task, we propose a Pseudo-Supervised Video Localization method, called PSVL, that can generate pseudo-supervision for training an NLVL model. Benchmarked on two widely used NLVL datasets, the proposed method exhibits competitive performance and performs on par or outperforms the models trained with stronger supervision.

task_nlvl


Environment

This repository is implemented base on PyTorch with Anaconda.
Refer to below instruction or use Docker (dcahn/psvl:latest).

Get the code

  • Clone this repo with git, please use:
git clone https://github.com/gistvision/PSVL.git
  • Make your own environment (If you use docker envronment, you just clone the code and execute it.)
conda create --name PSVL --file requirements.txt
conda activate PSVL

Working environment

  • RTX2080Ti (11G)
  • Ubuntu 18.04.5
  • pytorch 1.5.1

Download

Dataset & Pretrained model

  • This link is connected for downloading video features used in this paper.
    : After downloading the video feature, you need to set the data path in a config file.

  • This link is connected for downloading pre-trained model.

Evaluating pre-trained models

If you want to evaluate the pre-trained model, you can use below command.

python inference.py --model CrossModalityTwostageAttention --config "YOUR CONFIG PATH" --pre_trained "YOUR MODEL PATH"

Training models from scratch

To train PSVL, run train.py with below command.

# Training from scratch
python train.py --model CrossModalityTwostageAttention --config "YOUR CONFIG PATH"
# Evaluation
python inference.py --model CrossModalityTwostageAttention --config "YOUR CONFIG PATH" --pre_trained "YOUR MODEL PATH"

Lisence

MIT Lisence

Citation

If you use this code, please cite:

@inproceedings{nam2021zero,
  title={Zero-shot Natural Language Video Localization},
  author={Nam, Jinwoo and Ahn, Daechul and Kang, Dongyeop and Ha, Seong Jong and Choi, Jonghyun},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={1470-1479},
  year={2021}
}

Contact

If you have any questions, please send e-mail to me ([email protected], [email protected])

Owner
Computer Vision Lab. @ GIST
Some useful codes for computer vision and machine learning.
Computer Vision Lab. @ GIST
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Graphs".

PPO-BiHyb This is the official implementation of our NeurIPS 2021 paper "A Bi-Level Framework for Learning to Solve Combinatorial Optimization on Grap

<a href=[email protected]"> 66 Nov 23, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022