PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

Overview

DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN

DriveGAN: Towards a Controllable High-Quality Neural Simulation
Seung Wook Kim, Jonah Philion, Antonio Torralba, Sanja Fidler
CVPR (oral), 2021
[Paper] [Project Page]

Abstract: Realistic simulators are critical for training and verifying robotics systems. While most of the contemporary simulators are hand-crafted, a scaleable way to build simulators is to use machine learning to learn how the environment behaves in response to an action, directly from data. In this work, we aim to learn to simulate a dynamic environment directly in pixel-space, by watching unannotated sequences of frames and their associated action pairs. We introduce a novel high-quality neural simulator referred to as DriveGAN that achieves controllability by disentangling different components without supervision. In addition to steering controls, it also includes controls for sampling features of a scene, such as the weather as well as the location of non-player objects. Since DriveGAN is a fully differentiable simulator, it further allows for re-simulation of a given video sequence, offering an agent to drive through a recorded scene again, possibly taking different actions. We train DriveGAN on multiple datasets, including 160 hours of real-world driving data. We showcase that our approach greatly surpasses the performance of previous data-driven simulators, and allows for new features not explored before.

For business inquires, please contact [email protected]

For press and other inquireis, please contact Hector Marinez at [email protected]

Citation

  • If you found this codebase useful in your research, please cite:
@inproceedings{kim2021drivegan,
  title={DriveGAN: Towards a Controllable High-Quality Neural Simulation},
  author={Kim, Seung Wook and Philion, Jonah and Torralba, Antonio and Fidler, Sanja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5820--5829},
  year={2021}
}

Environment Setup

This codebase is tested with Ubuntu 18.04 and python 3.6.9, but it most likely would work with other close python3 versions.

  • Clone the repository
git clone https://github.com/nv-tlabs/DriveGAN_code.git
cd DriveGAN_code
  • Install dependencies
pip install -r requirements.txt

Data

We provide a dataset derived from Carla Simulator (https://carla.org/, https://github.com/carla-simulator/carla). This dataset is distributed under Creative Commons Attribution-NonCommercial 4.0 International Public LicenseCC BY-NC 4.0

All data are stored in the following link: https://drive.google.com/drive/folders/1fGM6KVzBL9M-6r7058fqyVnNcHVnYoJ3?usp=sharing

Training

Stage 1 (VAE-GAN)

If you want to skip stage 1 training, go to the Stage 2 (Dynamics Engine) section. For stage 1 training, download {0-5}.tar.gz from the link and extract. The extracted datasets have names starting with 6405 - change their name to data1 (for 0.tar.gz) to data6 (for 5.tar.gz).

cd DriveGAN_code/latent_decoder_model
mkdir img_data && cd img_data
tar -xvzf {0-5}.tar.gz
mv 6405x data{1-6}

Then, run

./scripts/train.sh ./img_data/data1,./img_data/data2,./img_data/data3,./img_data/data4,./img_data/data5,./img_data/data6

You can monitor training progress with tensorboard in the log_dir specified in train.sh

When validation loss converges, you can now encode the dataset with the learned model (located in log_dir from training)

./scripts/encode.sh ${path to saved model} 1 0 ./img_data/data1,./img_data/data2,./img_data/data3,./img_data/data4,./img_data/data5,./img_data/data6 ../encoded_data/data

Stage 2 (Dynamics Engine)

If you did not do Stage 1 training, download encoded_data.tar.gz and vaegan_iter210000.pt from link, and extract.

cd DriveGAN_code
mkdir encoded_data
tar -xvzf encoded_data.tar.gz -C encoded_data

Otherwise, run

cd DriveGAN_code
./scripts/train.sh encoded_data/data ${path to saved vae-gan model}

Playing with trained model

If you want to skip training, download simulator_epoch1020.pt and vaegan_iter210000.pt from link.

To play with a trained model, run

./scripts/play/server.sh ${path to saved dynamics engine} ${port e.g. 8888} ${path to saved vae-gan model}

Now you can navigate to localhost:{port} on your browser (tested on Chrome) and play.

(Controls - 'w': speed up, 's': slow down, 'a': steer left, 'd': steer right)

There are also additional buttons for changing contents. To sample a new scene, simply refresh the webpage.

License

Thie codebase and trained models are distributed under Nvidia Source Code License and the dataset is distributed under CC BY-NC 4.0.

Code for VAE-GAN is adapted from https://github.com/rosinality/stylegan2-pytorch (License).

Code for Lpips is imported from https://github.com/richzhang/PerceptualSimilarity (License).

StyleGAN custom ops are imported from https://github.com/NVlabs/stylegan2 (License).

Interactive UI code uses http://www.semantic-ui.com/ (License).

Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021