PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Overview

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Warning: the master branch might collapse. To obtain similar result in README, you can fall back to this commit, but remembered that some ops were not correctly implemented under that commit. Besides, you'd better use a lower learning rate, 1e-4 would be fine.

How to create CelebA-HQ dataset

I borrowed h5tool.py from official code. To create CelebA-HQ dataset, we have to download the original CelebA dataset, and the additional deltas files from here. After that, run

python2 h5tool.py create_celeba_hq file_name_to_save /path/to/celeba_dataset/ /path/to/celeba_hq_deltas

This is what I used on my laptop

python2 h5tool.py create_celeba_hq /Users/yuan/Downloads/CelebA-HQ /Users/yuan/Downloads/CelebA/Original\ CelebA/ /Users/yuan/Downloads/CelebA/CelebA-HQ-Deltas

I found that MD5 checking were always failed, so I just commented out the MD5 checking part(LN 568 and LN 589)

With default setting, it took 1 day on my server. You can specific num_threads and num_tasks for accleration.

Training from scratch

You have to create CelebA-HQ dataset first, please follow the instructions above.

To obtain the similar results in samples directory, see train_no_tanh.py or train.py scipt for details(with default options). Both should work well. For example, you could run

conda create -n pytorch_p36 python=3.6 h5py matplotlib
source activate pytorch_p36
conda install pytorch torchvision -c pytorch
conda install scipy
pip install tensorflow

#0=first gpu, 1=2nd gpu ,2=3rd gpu etc...
python train.py --gpu 0,1,2 --train_kimg 600 --transition_kimg 600 --beta1 0 --beta2 0.99 --gan lsgan --first_resol 4 --target_resol 256 --no_tanh

train_kimg(transition_kimg) means after seeing train_kimg * 1000(transition_kimg * 1000) real images, switching to fade in(stabilize) phase. Currently only support LSGAN and GAN with --no_noise option, since WGAN-GP is unavailable, --drift option does not affect the result. --no_tanh means do not use tanh at generator's output layer.

If you are Python 2 user, You'd better add this to the top of train.py since I use print('something...', file=f) to write experiment settings to file.

from __future__ import print_function

Tensorboard

tensorboard --logdir='./logs'

Update history

  • Update(20171213): Update data.py, now when fading in, real images are weighted combination of current resolution images and 0.5x resolution images. This weighting trick is similar to the one used in Generator's outputs or Discriminator's inputs. This helps stabilize when fading in.

  • Update(20171129): Add restoration mode. Basides, after many trying, I failed to combine BEGAN and PG-GAN. It's removed from the repository.

  • Update(20171124): Now training with CelebA-HQ dataset. Besides, still failing to introduce progressive growing to BEGAN, even with many modifications.

  • Update(20171121): Introduced progressive growing to BEGAN, see train_began.py script. However, experiments showed that it did not work at this moment. Finding bugs and tuning network structure...

  • Update(20171119): Unstable came from resize_activation function, after replacing repeat by torch.nn.functional.upsample, problem solved. And now I believe that both train.py and train_no_tanh should be stable. Restored from 128x128 stabilize, and continued training, currently at 256x256, phase = fade in, temporary results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171118): Making mistake in resize activation function(repeat is not a right in this function), though it's wrong, it's still effective when resolution<256, but collapsed at resolution>=256. Changing it now, scripts will be updated tomorrow. Sorry for this mistake.

  • Update(20171117): 128x128 fade in results(first 2 columns on the left were generated, and the other 2 columns were taken from dataset):

  • Update(20171116): Adding noise only to RGB images might still collapse. Switching to the same trick as the paper suggested. Besides, the paper used linear as activation of G's output layer, which is reasonable, as I observed in the experiments. Temporary results: 64x64, phase=fade in, the left 4 columns are Generated, and the right 4 columns are from real samples(when fading in, instability might occur, for example, the following results is not so promising, however, as the training goes, it gets better), higher resolution will be available soon.

  • Update(20171115): Mode collapse happened when fading in, debugging... => It turns out that unstable seems to be normal when fading in, after some more iterations, it gets better. Now I'm not using the same noise adding trick as the paper suggested, however, it had been implemented, I will test it and plug it into the network.

  • Update(20171114): First version, seems that the generator tends to generate white image. Debugging now. => Fixed some bugs. Now seems normal, training... => There are some unknown problems when fading in, debugging...

  • Update(20171113): Generator and Discriminator: ok, simple test passed.

  • Update(20171112): It's now under reimplementation.

  • Update(20171111): It's still under implementation. I did not care design the structure, and now I had to reimplement(phase='fade in' is hard to implement under current structure). I also fixed some bugs, since reimplementation is needed, I do not plan to pull requests at this moment.

Reference implementation

A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution

DRSAN A Dynamic Residual Self-Attention Network for Lightweight Single Image Super-Resolution Karam Park, Jae Woong Soh, and Nam Ik Cho Environments U

4 May 10, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton

HandFoldingNet ✌️ : A 3D Hand Pose Estimation Network Using Multiscale-Feature Guided Folding of a 2D Hand Skeleton Wencan Cheng, Jae Hyun Park, Jong

cwc1260 23 Oct 21, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022