Temporally Coherent GAN SIGGRAPH project.

Related tags

Deep LearningTecoGAN
Overview

TecoGAN

This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution. Authors: Mengyu Chu, You Xie, Laura Leal-Taixe, Nils Thuerey. Technical University of Munich.

This repository so far contains the code for the TecoGAN inference and training, and downloading the training data. Pre-trained models are also available below, you can find links for downloading and instructions below. This work was published in the ACM Transactions on Graphics as "Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation (TecoGAN)", https://doi.org/10.1145/3386569.3392457. The video and pre-print can be found here:

Video: https://www.youtube.com/watch?v=pZXFXtfd-Ak Preprint: https://arxiv.org/pdf/1811.09393.pdf Supplemental results: https://ge.in.tum.de/wp-content/uploads/2020/05/ClickMe.html

TecoGAN teaser image

Additional Generated Outputs

Our method generates fine details that persist over the course of long generated video sequences. E.g., the mesh structures of the armor, the scale patterns of the lizard, and the dots on the back of the spider highlight the capabilities of our method. Our spatio-temporal discriminator plays a key role to guide the generator network towards producing coherent detail.

Lizard

Armor

Spider

Running the TecoGAN Model

Below you can find a quick start guide for running a trained TecoGAN model. For further explanations of the parameters take a look at the runGan.py file.
Note: evaluation (test case 2) currently requires an Nvidia GPU with CUDA. tkinter is also required and may be installed via the python3-tk package.

# Install tensorflow1.8+,
pip3 install --ignore-installed --upgrade tensorflow-gpu # or tensorflow
# Install PyTorch (only necessary for the metric evaluations) and other things...
pip3 install -r requirements.txt

# Download our TecoGAN model, the _Vid4_ and _TOS_ scenes shown in our paper and video.
python3 runGan.py 0

# Run the inference mode on the calendar scene.
# You can take a look of the parameter explanations in the runGan.py, feel free to try other scenes!
python3 runGan.py 1 

# Evaluate the results with 4 metrics, PSNR, LPIPS[1], and our temporal metrics tOF and tLP with pytorch.
# Take a look at the paper for more details! 
python3 runGan.py 2

Train the TecoGAN Model

1. Prepare the Training Data

The training and validation dataset can be downloaded with the following commands into a chosen directory TrainingDataPath. Note: online video downloading requires youtube-dl.

# Install youtube-dl for online video downloading
pip install --user --upgrade youtube-dl

# take a look of the parameters first:
python3 dataPrepare.py --help

# To be on the safe side, if you just want to see what will happen, the following line won't download anything,
# and will only save information into log file.
# TrainingDataPath is still important, it the directory where logs are saved: TrainingDataPath/log/logfile_mmddHHMM.txt
python3 dataPrepare.py --start_id 2000 --duration 120 --disk_path TrainingDataPath --TEST

# This will create 308 subfolders under TrainingDataPath, each with 120 frames, from 28 online videos.
# It takes a long time.
python3 dataPrepare.py --start_id 2000 --duration 120 --REMOVE --disk_path TrainingDataPath

Once ready, please update the parameter TrainingDataPath in runGAN.py (for case 3 and case 4), and then you can start training with the downloaded data!

Note: most of the data (272 out of 308 sequences) are the same as the ones we used for the published models, but some (36 out of 308) are not online anymore. Hence the script downloads suitable replacements.

2. Train the Model

This section gives command to train a new TecoGAN model. Detail and additional parameters can be found in the runGan.py file. Note: the tensorboard gif summary requires ffmpeg.

# Install ffmpeg for the  gif summary
sudo apt-get install ffmpeg # or conda install ffmpeg

# Train the TecoGAN model, based on our FRVSR model
# Please check and update the following parameters: 
# - VGGPath, it uses ./model/ by default. The VGG model is ca. 500MB
# - TrainingDataPath (see above)
# - in main.py you can also adjust the output directory of the  testWhileTrain() function if you like (it will write into a train/ sub directory by default)
python3 runGan.py 3

# Train without Dst, (i.e. a FRVSR model)
python3 runGan.py 4

# View log via tensorboard
tensorboard --logdir='ex_TecoGANmm-dd-hh/log' --port=8008

Tensorboard GIF Summary Example

gif_summary_example

Acknowledgements

This work was funded by the ERC Starting Grant realFlow (ERC StG-2015-637014).
Part of the code is based on LPIPS[1], Photo-Realistic SISR[2] and gif_summary[3].

Reference

[1] The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (LPIPS)
[2] Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
[3] gif_summary

TUM I15 https://ge.in.tum.de/ , TUM https://www.tum.de/

Owner
Duc Linh Nguyen
Have passion in programming, using JS, Python, Ruby, Assembly, Perl, Java, Golang, C++, C#/.NET languages .
Duc Linh Nguyen
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Convert game ISO and archives to CD CHD for emulation on Linux.

tochd Convert game ISO and archives to CD CHD for emulation. Author: Tuncay D. Source: https://github.com/thingsiplay/tochd Releases: https://github.c

Tuncay 20 Jan 02, 2023
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
Code for "Multi-Time Attention Networks for Irregularly Sampled Time Series", ICLR 2021.

Multi-Time Attention Networks (mTANs) This repository contains the PyTorch implementation for the paper Multi-Time Attention Networks for Irregularly

The Laboratory for Robust and Efficient Machine Learning 68 Dec 17, 2022
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022