Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

Overview

line scanning repository

plot

This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza Centre for Neuroimaging in Amsterdam. The script master controls the modules prefixed by spinoza_, which in turn call upon various scripts in the utils and bin directory. The scripts in the latter folders are mostly helper scripts to make life a tad easier. The repository contains a mix of languages in bash, python, and matlab.

In active development - do not use unless otherwise instructed by repo owners

Documentation for this package can be found at readthedocs (not up to date)

Policy & To Do

  • install using python setup.py develop
  • Docstrings in numpy format.
  • PEP8 - please set your editor to autopep8 on save!
  • Documentation with Sphinx (WIP)
  • Explore options to streamline code
  • Examples of applications for package (integration of pycortex & pRFpy)

overview of the pipeline

how to set up

Clone the repository: git clone https://github.com/gjheij/linescanning.git.

To setup the bash environment, edit setup file linescanning/shell/spinoza_setup:

  • line 76: add the path to your matlab installation if available (should be, for better anatomicall preprocessing)
  • line 87: add the path to your SPM installation
  • line 92: add your project name
  • line 97: add the path to project name as defined in line 92
  • line 102: add whether you're using (ME)MP(2)RAGE. This is required because the pipeline allows the usage of the average of an MP2RAGE and MP2RAGEME acquisition
  • line 105: add which type of data you're using (generally this will be the same as line 102)

Go to linescanning/shell and hit ./spinoza_setup setup setup. This will print a set of instructions that you need to follow. If all goes well this will make all the script executable, set all the paths, and install the python modules. The repository comes with a conda environment file, which can be activated with: conda create --name myenv --file environment.yml.

How to plan the line

plot

We currently aim to have two separate sessions: in the first session, we acquire high resolution anatomical scans and perform a population receptive field (pRF-) mapping paradigm (Dumoulin and Wandell, 2008) to delineate the visual field. After this session, we create surfaces of the brain and map the pRFs onto that via fMRIprep and pRFpy. We then select a certain vertex based on the parameters extracted from the pRF-mapping: eccentricity, size, and polar angle. Using these parameters, we can find an optimal vertex. We can obtain the vertex position, while by calculating the normal vector, we obtain the orientation that line should have (parellel to the normal vector and through the vertex point). Combining this information, we know how the line should be positioned in the first session anatomy. In the second session, we first acquire a low-resolution MP2RAGE with the volume coil. This is exported and registered to the first session anatomy during the second session to obtain the translations and rotations needed to map the line from the first session anatomy to the currently active second session by inputting the values in the MR-console. This procedure from registration to calculation of MR-console values is governed by spinoza_lineplanning and can be called with master -m 00 -s -h .

Owner
Jurjen Heij
Jurjen Heij
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
Bayesian Optimization Library for Medical Image Segmentation.

bayesmedaug: Bayesian Optimization Library for Medical Image Segmentation. bayesmedaug optimizes your data augmentation hyperparameters for medical im

Şafak Bilici 7 Feb 10, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
An AFL implementation with UnTracer (our coverage-guided tracer)

UnTracer-AFL This repository contains an implementation of our prototype coverage-guided tracing framework UnTracer in the popular coverage-guided fuz

113 Dec 17, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022