Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Overview

Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occam’s Razor?"

Authors: Gonzalo Jaimovitch-López, David Castellano-Falcón, Cèsar Ferri, José Hernández-Orallo

Experiments

GPT-2

The experiment is fully performed on a single Notebook.

When opening the Notebook, just follow the code sections to run the experiment. Note that a file with the experiment results is provided. The results are printed in the corresponding section.

GPT-3

There are different Notebooks which post-process the outputs returned by GPT-3 in the experiment.

You can find two folders: main (for the experiments presented in the main paper) and additional (for the experiments included in the supplementary material).

The use of GPT-3 requires of an API key which cannot be provided with the code. However, the prompts used in the experiment are included in the repository.

If you would like to run the prompt queries in GPT-3, visit the OpenAI´s API Webpage. Make sure you adjust the temperature depending on the experiment you would like to test. Furthermore, note that results obtained with the use of the API from the webpage and the use of the API from the Python environment might differ based on the different encodings.

Main experiments

  1. Temperature = 0

  2. Temperature = 1

Run the lines of code in order. Note that you will have to choose (using the following cell at the top of the notebooks) the desired model to obtain the results.

#Choose between {'ada', 'babbage', 'curie', 'davinci'}
MODEL = 'davinci'

Additional experiments

  1. Alternative alphabet (Apple, Banana)

  2. Separator between characters in input / output

  3. Concepts with loops

  4. Many more concepts / Not using machine teaching

    Run the lines of code in order. Note that you will have to choose (using the following cell at the top of the notebooks) the desired experiment to obtain the results.

#Choose complete_EXPERIMENT.csv being EXPERIMENT {'ada', 'babbage', 'curie', 'davinci', 'EXP_A', 'EXP_B'}
EXPERIMENT = 'ada'
  1. Baselines

MagicHaskeller

MagicHaskeller must be previously installed.

To run the experiment, execute the Python script. The returned functions will be written in the corresponding file depending on the path provided in the script.

From the list of functions (you can find the outputs in this folder), we take the first function from the top of the list and use it as a solution, querying the test examples using Haskell. The summary of the results can be found in MHResults.txt.

Louise

Louise must be previously installed.

First you should run Louise and execute the dedicated script including the different examples where indicated depending on the concept (you can find them in pos_neg_ex.txt).

Subsequently, the evaluation of the test examples (using the predicates returned by the system) is performed in the Notebook.

Humans

We provide a PDF with the questionnaire performed by the human participants in this experiment. Note that the headlines mark the start of each screen that was presented to the participants, as this is not clearly reflected in the PDF version of the form. This can be observed when opening the HTML file, stored in the source code folder.

Additional Material

A Python script is provided to test the P3 functioning.

Finally, the R scripts for the generation of the paper plots are included.

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 08, 2023
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022