Pretty Tensor - Fluent Neural Networks in TensorFlow

Overview

Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Pretty Tensor provides a set of objects that behave likes Tensors, but also support a chainable object syntax to quickly define neural networks and other layered architectures in TensorFlow.

result = (pretty_tensor.wrap(input_data, m)
          .flatten()
          .fully_connected(200, activation_fn=tf.nn.relu)
          .fully_connected(10, activation_fn=None)
          .softmax(labels, name=softmax_name))

Please look here for full documentation of the PrettyTensor object for all available operations: Available Operations or you can check out the complete documentation

See the tutorial directory for samples: tutorial/

Installation

The easiest installation is just to use pip:

  1. Follow the instructions at tensorflow.org
  2. pip install prettytensor

Note: Head is tested against the TensorFlow nightly builds and pip is tested against TensorFlow release.

Quick start

Imports

import prettytensor as pt
import tensorflow as tf

Setup your input

my_inputs = # numpy array of shape (BATCHES, BATCH_SIZE, DATA_SIZE)
my_labels = # numpy array of shape (BATCHES, BATCH_SIZE, CLASSES)
input_tensor = tf.placeholder(np.float32, shape=(BATCH_SIZE, DATA_SIZE))
label_tensor = tf.placeholder(np.float32, shape=(BATCH_SIZE, CLASSES))
pretty_input = pt.wrap(input_tensor)

Define your model

softmax, loss = (pretty_input.
                 fully_connected(100).
                 softmax_classifier(CLASSES, labels=label_tensor))

Train and evaluate

accuracy = softmax.evaluate_classifier(label_tensor)

optimizer = tf.train.GradientDescentOptimizer(0.1)  # learning rate
train_op = pt.apply_optimizer(optimizer, losses=[loss])

init_op = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init_op)
    for inp, label in zip(my_inputs, my_labels):
        unused_loss_value, accuracy_value = sess.run([loss, accuracy],
                                 {input_tensor: inp, label_tensor: label})
        print 'Accuracy: %g' % accuracy_value

Features

Thin

Full power of TensorFlow is easy to use

Pretty Tensors can be used (almost) everywhere that a tensor can. Just call pt.wrap to make a tensor pretty.

You can also add any existing TensorFlow function to the chain using apply. apply applies the current Tensor as the first argument and takes all the other arguments as normal.

Note: because apply is so generic, Pretty Tensor doesn't try to wrap the world.

Plays well with other libraries

It also uses standard TensorFlow idioms so that it plays well with other libraries, this means that you can use it a little bit in a model or throughout. Just make sure to run the update_ops on each training set (see with_update_ops).

Terse

You've already seen how a Pretty Tensor is chainable and you may have noticed that it takes care of handling the input shape. One other feature worth noting are defaults. Using defaults you can specify reused values in a single place without having to repeat yourself.

with pt.defaults_scope(activation_fn=tf.nn.relu):
  hidden_output2 = (pretty_images.flatten()
                   .fully_connected(100)
                   .fully_connected(100))

Check out the documentation to see all supported defaults.

Code matches model

Sequential mode lets you break model construction across lines and provides the subdivide syntactic sugar that makes it easy to define and understand complex structures like an inception module:

with pretty_tensor.defaults_scope(activation_fn=tf.nn.relu):
  seq = pretty_input.sequential()
  with seq.subdivide(4) as towers:
    towers[0].conv2d(1, 64)
    towers[1].conv2d(1, 112).conv2d(3, 224)
    towers[2].conv2d(1, 32).conv2d(5, 64)
    towers[3].max_pool(2, 3).conv2d(1, 32)

Inception module showing branch and rejoin

Templates provide guaranteed parameter reuse and make unrolling recurrent networks easy:

output = [], s = tf.zeros([BATCH, 256 * 2])

A = (pretty_tensor.template('x')
     .lstm_cell(num_units=256, state=UnboundVariable('state'))

for x in pretty_input_array:
  h, s = A.construct(x=x, state=s)
  output.append(h)

There are also some convenient shorthands for LSTMs and GRUs:

pretty_input_array.sequence_lstm(num_units=256)

Unrolled RNN

Extensible

You can call any existing operation by using apply and it will simply subsitute the current tensor for the first argument.

pretty_input.apply(tf.mul, 5)

You can also create a new operation There are two supported registration mechanisms to add your own functions. @Register() allows you to create a method on PrettyTensor that operates on the Tensors and returns either a loss or a new value. Name scoping and variable scoping are handled by the framework.

The following method adds the leaky_relu method to every Pretty Tensor:

@pt.Register
def leaky_relu(input_pt):
  return tf.select(tf.greater(input_pt, 0.0), input_pt, 0.01 * input_pt)

@RegisterCompoundOp() is like adding a macro, it is designed to group together common sets of operations.

Safe variable reuse

Within a graph, you can reuse variables by using templates. A template is just like a regular graph except that some variables are left unbound.

See more details in PrettyTensor class.

Accessing Variables

Pretty Tensor uses the standard graph collections from TensorFlow to store variables. These can be accessed using tf.get_collection(key) with the following keys:

  • tf.GraphKeys.VARIABLES: all variables that should be saved (including some statistics).
  • tf.GraphKeys.TRAINABLE_VARIABLES: all variables that can be trained (including those before a stop_gradients` call). These are what would typically be called parameters of the model in ML parlance.
  • pt.GraphKeys.TEST_VARIABLES: variables used to evaluate a model. These are typically not saved and are reset by the LocalRunner.evaluate method to get a fresh evaluation.

Authors

Eider Moore (eiderman)

with key contributions from:

  • Hubert Eichner
  • Oliver Lange
  • Sagar Jain (sagarjn)
Owner
Google
Google ❤️ Open Source
Google
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.

Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just

Pavel Yakubovskiy 4.2k Jan 09, 2023
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022