Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Related tags

Deep LearningCDIL-CNN
Overview

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

arXiv preprint: https://arxiv.org/abs/2201.02143.

Architecture

CDIL-CNN is a novel convolutional model for sequence classification. We use symmetric dilated convolutions, a circular mixing protocol, and an average ensemble learning.

Symmetric Dilated Convolutions

Circular Mixing

CDIL-CNN

Experiments

Synthetic Task

To reproduce the synthetic data experiment results, you should:

  1. Run syn_data_generation.py;
  2. Run syn_main.py for one experiment or run syn_all.sh for all experiments.

The generator will create 6 files for each sequence length and store them in the syn_datasets folder in the following format: adding2000_{length}_train.pt adding2000_{length}_train_target.pt adding2000_{length}_test.pt adding2000_{length}_test_target.pt adding2000_{length}_val.pt adding2000_{length}_val_target.pt

By default, it iterates over 8 sequence lengths: [2**7, 2**8, 2**9, 2**10, 2**11, 2**12, 2**13, 2**14].

You can run different models for different lengths. The syn_log folder will save all results.

We provide our used configurations in syn_config.py.

Long Range Arena

Long Range Arena (LRA) is a public benchmark suite. The datasets and the download link can be found in the official GitHub repository.

To reproduce the LRA experiment results, you should:

  1. Download lra_release.gz (~7.7 GB), extract it, move the folder ./lra_release/lra_release into our create_datasets folder, and run all_create_datasets.sh.
  2. Run lra_main.py for one experiment or run lra_all.sh for all experiments.

The dataset creators will create 3 files for each task and store them in the lra_datasets folder in the following format: {task}.train.pickle {task}.test.pickle {task}.dev.pickle

You can run different models on different tasks. The lra_log folder will save all results.

We provide our used configurations in lra_config.py.

Time Series

The UEA & UCR Repository consists of various time series classification datasets. We use three audio datasets: FruitFlies, RightWhaleCalls, and MosquitoSound.

To reproduce the time series results, you should:

  1. Download the datasets, extract them, move the extracted folders into our time_datasets folder, and run time_arff_generation.py.
  2. Run time_main.py for one experiment or run time_all.sh for all experiments.

The generator will create 2 files for each dataset and store them in the time_datasets folder in the following format: {dataset}_train.csv {dataset}_test.csv

You can run different models on different datasets. The time_log folder will save all results.

We provide our used configurations in time_main.py.

Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

RCIL [CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2

Chang-Bin Zhang 71 Dec 28, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022