HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

Related tags

Deep Learningheatnet
Overview

HeatNet

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales. It also includes preprocessing tools for atmospheric reanalysis data from the Copernicus Climate Data Store.

Dependencies

HeatNet relies on the DLWP-CS project, described in Weyn et al. (2020), and inherits all of its dependencies.

HeatNet requires installation of

  • TensorFlow >= 2.0, to build neural networks and data generators.
  • netCDF4, to read and write netCDF4 datasets.
  • xarray, to seamlessly manipulate datasets and data arrays.
  • dask, to support parallel xarray computations and streaming computation on datasets that don't fit into memory.
  • h5netcdf, which provides a flexible engine for xarray I/O operations.
  • NumPy for efficient array manipulation.
  • cdsapi, to enable downloading data from the Copernicus Climate Data Store.
  • TempestRemap, for mapping functions from latitude-longitude grids to cubed-sphere grids.

Modules

  • data: Classes and methods to download, preprocess and generate reanalysis data for model training.
  • model: Model architectures, custom losses and model estimators with descriptive metadata.
  • eval: Methods to evaluate model predictions, and compare against persistence or climatology.
  • test: Unit tests for classes and methods in the package.

License

HeatNet is distributed under the GNU General Public License Version 3, which means that any software modifying or relying on the HeatNet package must be distributed under the same license. Consult the full notice to understand your rights.

Installation guide

The installation of heatnet and its dependencies has been tested with the following configuration on both Linux and Mac personal workstations:

  • Create a new Python 3.7 environment using [conda] (https://www.anaconda.com/products/individual).

  • In the terminal, activate the environment,
    conda activate .

  • Install TensorFlow v2.3,
    pip install tensorflow==2.3

  • Install xarray,
    pip install xarray

  • Install netCDF4,
    conda install netCDF4

  • Install TempestRemap,
    conda install -c conda-forge tempest-remap

  • Install h5netcdf,
    conda install -c conda-forge h5netcdf

  • Install pygrib (Optional),
    pip install pygrib

  • Install cdsapi,
    pip install cdsapi

  • Install h5py v2.10.0,
    pip install h5py==2.10.0

  • Finally, install dask,
    pip install dask

  • The DLWP package is not currently published, so the source code must be downloaded from its GitHub repository. It is recommended to download this package in the same parent directory as HeatNet,
    git clone https://github.com/jweyn/DLWP-CS.git

  • If you want to plot results using Basemap, which is a slightly fragile (and deprecated) package, the following configuration is compatible with this setup:
    conda install basemap
    pip install -U matplotlib==3.2

Disclaimers

This is not an officially supported Google Product.

Owner
Google Research
Google Research
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
Single cell current best practices tutorial case study for the paper:Luecken and Theis, "Current best practices in single-cell RNA-seq analysis: a tutorial"

Scripts for "Current best-practices in single-cell RNA-seq: a tutorial" This repository is complementary to the publication: M.D. Luecken, F.J. Theis,

Theis Lab 968 Dec 28, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Deep Learning agent of Starcraft2, similar to AlphaStar of DeepMind except size of network.

Introduction This repository is for Deep Learning agent of Starcraft2. It is very similar to AlphaStar of DeepMind except size of network. I only test

Dohyeong Kim 136 Jan 04, 2023
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023