Implementation of Common Image Evaluation Metrics by Sayed Nadim (sayednadim.github.io). The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

Overview

Image Quality Evaluation Metrics

Implementation of some common full reference image quality metrics. The repo is built based on full reference image quality metrics such as L1, L2, PSNR, SSIM, LPIPS. and feature-level quality metrics such as FID, IS. It can be used for evaluating image denoising, colorization, inpainting, deraining, dehazing etc. where we have access to ground truth.

The goal of this repo is to provide a common evaluation script for image evaluation tasks. It contains some commonly used image quality metrics for image evaluation (e.g., L1, L2, SSIM, PSNR, LPIPS, FID, IS).

Pull requests and corrections/suggestions will be cordially appreciated.

Inception Score is not correct. I will check and confirm. Other metrics are ok!

Please Note

  • Images are scaled to [0,1]. If you need to change the data range, please make sure to change the data range in SSIM and PSNR.
  • Number of generated images and ground truth images have to be exactly same.
  • I have resized the images to be (256,256). You can change the resolution based on your needs.
  • Please make sure that all the images (generated and ground_truth images) are in the corresponding folders.

Requirements

How to use

Edit config.yaml as per your need.

  • Run main.py

Usage

  • Options in config.yaml file
    • dataset_name - Name of the dataset (e.g. Places, DIV2K etc. Used for saving dataset name in csv file.). Default
      • Places
    • dataset_with_subfolders - Set to True if your dataset has sub-folders containing images. Default - False
    • multiple_evaluation - Whether you want sequential evaluation ro single evaluation. Please refer to the folder structure for this.
    • dataset_format - Whether you are providing flists or just path to the image folders. Default - image.
    • model_name - Name of the model. Used for saving metrics values in the CSV. Default - Own.
    • generated_image_path - Path to your generated images.
    • ground_truth_image_path - Path to your ground truth images.
    • batch_size - batch size you want to use. Default - 4.
    • image_shape - Shape of the image. Both generated image and ground truth images will be resized to this width. Default - [256, 256, 3].
    • threads - Threads to be used for multi-processing Default - 4.
    • random_crop - If you want random cropped image, instead of resized. Currently not implemented.
    • save_results - If you want to save the results in csv files. Saved to results folder. Default - True.
    • save_type - csv or npz. npz is not implemented yet.

Single or multiple evaluation

        # ================= Single structure ===================#

    |- root
    |   |- image_1
    |   |- image_2
    |   | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    For multiple_evaluation, I assumed the file system like this:

        # ================= structure 1 ===================#
    |- root
    |   |- file_10_20
    |        |- image_1
    |        |- image_2
    |        | - .....
    |    |- file_20_30
    |        |- image_1
    |        |- image_2
    |         | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

    or nested structure like this....

        # ================= structure 2 ===================#

    |- root
    |   |- 01_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |   |- 02_cond
    |       |- cond_10_20
    |           |- image_1
    |           |- image_2
    |           | - .....
    |- gt
    |   |- image_1
    |   |- image_2
    |   | - .....

To-do metrics

  • L1
  • L2
  • SSIM
  • PSNR
  • LPIPS
  • FID
  • IS

To-do tasks

  • implementation of the framework
  • primary check for errors
  • Sequential evaluation (i.e. folder1,folder2, folder3... vs ground_truth, useful for denoising, inpainting etc.)
  • unittest

Acknowledgement

Thanks to PhotoSynthesis Team for the wonderful implementation of the metrics. Please cite accordingly if you use PIQ for the evaluation.

Cheers!!

Owner
Sayed Nadim
A string is actually a collection of characters, much like myself.
Sayed Nadim
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Steven Liu 216 Dec 30, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022